Development of a hybrid model to estimate surface roughness of 3D printed parts

被引:3
|
作者
Kugunavar, Sowrabh [1 ]
Viralka, Mridul [1 ]
Sangwan, Kuldip Singh [1 ]
机构
[1] Birla Inst Technol & Sci, Pilani Campus, Pilani 333031, Rajasthan, India
关键词
Additive manufacturing; Hybrid modelling; Mathematical modelling; Surface roughness; Measurement uncertainties; STYLUS FLIGHT;
D O I
10.1016/j.addma.2024.104368
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The research aims to develop a hybrid model to estimate the surface roughness of 3D printed parts, considering the significant process parameters and measurement uncertainties inherent in additive manufacturing (AM). The methodology involves a Taguchi L-27 orthogonal array design of experiments (DOE) to identify significant factors. This is followed by a deep dive analysis of the roughness profile and the modelling of the measurement process uncertainties. The ANOVA tests reveal that build orientation and layer height are critical contributors to surface roughness. However, it was evident from the experimental analysis that the layer height and build orientation shares a complex relation on surface roughness. The two novelties of this paper are: one, the development of a hybrid model of surface roughness by mathematically quantifying the staircase (step and stack) and corner geometry effects of the part geometry. Two, strengthening the model's surface roughness prediction accuracy by incorporating the stylus flight and probe reachability measurement uncertainty functions. The final mathematical function was validated with multiple experimental data as well as literature data. The results show that the proposed model is robust to estimate the surface finish accurately at build orientations in the full range of 0-90 degree. The statistical analysis shows that the proposed model is capable of accurately predicting about 90 % variations in the data at different layer heights and build orientations. The proposed model is useful to accurately predict the surface finish of 3D printed parts, a priori, during the part design or before printing, thereby improving the surface quality of the AM parts.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Prediction surface roughness of 3D printed parts using genetic algorithm optimized hybrid learning model
    Akgun, Gazi
    Ulkir, Osman
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2024, 37 (07) : 2225 - 2245
  • [2] Development of mathematical model for surface roughness estimation in material jetting 3D printed parts
    Pandey, Praneet
    Nayak, Ankit
    Taufik, Mohammad
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023,
  • [3] Surface Anisotropy on 3D Printed Parts
    Ficzere, Peter
    PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 2024, 68 (03): : 272 - 277
  • [4] Evaluation of mathematical models for surface roughness prediction of PolyJet 3D printed parts
    Pandey, Praneet
    Nayak, Ankit
    Taufik, Mohammad
    ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES, 2024, 10 (01) : 89 - 98
  • [5] Investigating the Dimensional Accuracy and Surface Roughness for 3D Printed Parts Using a Multi-jet Printer
    Chand, Ramesh
    Sharma, Vishal S.
    Trehan, Rajeev
    Gupta, Munish Kumar
    Sarikaya, Murat
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (03) : 1145 - 1159
  • [6] Investigating the Dimensional Accuracy and Surface Roughness for 3D Printed Parts Using a Multi-jet Printer
    Ramesh Chand
    Vishal S. Sharma
    Rajeev Trehan
    Munish Kumar Gupta
    Murat Sarikaya
    Journal of Materials Engineering and Performance, 2023, 32 : 1145 - 1159
  • [7] Surface roughness improvement of 3D printed microchannel
    Zhang, Kunpeng
    Wang, Huihui
    Yao, Kaihan
    He, Gonghan
    Zhou, Zhou
    Sun, Daoheng
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2020, 30 (06)
  • [8] On the Surface Roughness and Smoothing in the 3D Printed THz Reflectors
    Adibelli, Sinan
    Juyal, Prateek
    Zajic, Alenka
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 593 - 594
  • [9] SURFACE ROUGHNESS EFFECT ON THE 3D PRINTED BUTT JOINTS STRENGTH
    Kovan, V.
    Altan, G.
    Topal, E. S.
    Camurlu, H. E.
    PROCEEDINGS OF VIII INTERNATIONAL SCIENTIFIC CONFERENCE (BALTTRIB' 2015), 2016, : 117 - 121
  • [10] Surface Roughness Analysis of 3D Printed PLA Notched Curve Shell
    Kuntjoro, Wahyu
    Jalil, Abdul Malik Hussein bin Abdul
    Nasir, Rizal Effendy bin Mohd
    Saedon, Juri
    JOURNAL OF AERONAUTICS ASTRONAUTICS AND AVIATION, 2023, 55 (03): : 469 - 478