Enhanced Osteoporosis Detection Using Artificial Intelligence: A Deep Learning Approach to Panoramic Radiographs with an Emphasis on the Mental Foramen

被引:3
|
作者
Gaudin, Robert [1 ,2 ,3 ,4 ]
Otto, Wolfram [1 ,2 ,3 ]
Ghanad, Iman [1 ,2 ,3 ]
Kewenig, Stephan [1 ,2 ,3 ]
Rendenbach, Carsten [1 ,2 ,3 ]
Alevizakos, Vasilios [5 ]
Grun, Pascal [6 ]
Kofler, Florian [7 ,8 ]
Heiland, Max [1 ,2 ,3 ]
von See, Constantin [5 ]
机构
[1] Charite Univ Med Berlin, Augustenburger Pl 1, D-13353 Berlin, Germany
[2] Free Univ Berlin, Augustenburger Pl 1, D-13353 Berlin, Germany
[3] Humboldt Univ, Dept Oral & Maxillofacial Surg, Augustenburger Pl 1, D-13353 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, D-10117 Berlin, Germany
[5] Danube Private Univ, Ctr Digital Technol Dent & CAD CAM, A-3500 Krems An Der Donau, Austria
[6] Danube Private Univ, Fac Med Dent Med, Ctr Oral & Maxillofacial Surg, A-3500 Krems An Der Donau, Austria
[7] Helmholtz Zentrum Munchen, Helmholtz AI, Ingostaedter Landstr 1, D-85764 Oberschleissheim, Germany
[8] Tech Univ Munich, TUM Neuroimaging Ctr, Klinikum Rechts Isar, D-81675 Munich, Germany
关键词
osteoporosis detection; deep learning; panoramic radiographs; convolutional neural network (CNN); early diagnostic tool; BONE-DENSITY; MANAGEMENT; DIAGNOSIS; INDEX;
D O I
10.3390/medsci12030049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteoporosis, a skeletal disorder, is expected to affect 60% of women aged over 50 years. Dual-energy X-ray absorptiometry (DXA) scans, the current gold standard, are typically used post-fracture, highlighting the need for early detection tools. Panoramic radiographs (PRs), common in annual dental evaluations, have been explored for osteoporosis detection using deep learning, but methodological flaws have cast doubt on otherwise optimistic results. This study aims to develop a robust artificial intelligence (AI) application for accurate osteoporosis identification in PRs, contributing to early and reliable diagnostics. A total of 250 PRs from three groups (A: osteoporosis group, B: non-osteoporosis group matching A in age and gender, C: non-osteoporosis group differing from A in age and gender) were cropped to the mental foramen region. A pretrained convolutional neural network (CNN) classifier was used for training, testing, and validation with a random split of the dataset into subsets (A vs. B, A vs. C). Detection accuracy and area under the curve (AUC) were calculated. The method achieved an F1 score of 0.74 and an AUC of 0.8401 (A vs. B). For young patients (A vs. C), it performed with 98% accuracy and an AUC of 0.9812. This study presents a proof-of-concept algorithm, demonstrating the potential of deep learning to identify osteoporosis in dental radiographs. It also highlights the importance of methodological rigor, as not all optimistic results are credible.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep learning-based evaluation of panoramic radiographs for osteoporosis screening: a systematic review and meta-analysis
    Tarighatnia, Ali
    Amanzadeh, Masoud
    Hamedan, Mahnaz
    Mohammadnia, Alireza
    Nader, Nader D.
    BMC MEDICAL IMAGING, 2025, 25 (01):
  • [42] Super-Resolution of Dental Panoramic Radiographs Using Deep Learning: A Pilot Study
    Mohammad-Rahimi, Hossein
    Vinayahalingam, Shankeeth
    Mahmoudinia, Erfan
    Soltani, Parisa
    Berge, Stefaan J.
    Krois, Joachim
    Schwendicke, Falk
    DIAGNOSTICS, 2023, 13 (05)
  • [43] Analysis of the feasibility of using deep learning for multiclass classification of dental anomalies on panoramic radiographs
    Okazaki, Shota
    Mine, Yuichi
    Iwamoto, Yuko
    Urabe, Shiho
    Mitsuhata, Chieko
    Nomura, Ryota
    Kakimoto, Naoya
    Murayama, Takeshi
    DENTAL MATERIALS JOURNAL, 2022, 41 (06) : 889 - 895
  • [44] Enhanced Diagnostic Accuracy for Dental Caries and Anomalies in Panoramic Radiographs Using a Custom Deep Learning Model
    Bhat, Suvarna
    Birajdar, Gajanan
    Patil, Mukesh
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (08)
  • [45] Detection of Sacral Fractures on Radiographs Using Artificial Intelligence
    Inagaki, Naoya
    Nakata, Norio
    Ichimori, Sina
    Udaka, Jun
    Mandai, Ayano
    Saito, Mitsuru
    JBJS OPEN ACCESS, 2022, 7 (03)
  • [46] Automatic identification of individuals using deep learning method on panoramic radiographs
    Enomoto, Akifumi
    Lee, Atsushi-Doksa
    Sukedai, Miho
    Shimoide, Takeshi
    Katada, Ryuichi
    Sugimoto, Kana
    Matsumoto, Hiroshi
    JOURNAL OF DENTAL SCIENCES, 2023, 18 (02) : 696 - 701
  • [47] Automated Caries Screening Using Ensemble Deep Learning on Panoramic Radiographs
    Bui, Toan Huy
    Hamamoto, Kazuhiko
    Paing, May Phu
    ENTROPY, 2022, 24 (10)
  • [48] Deep Learning for Osteoporosis Classification Using Hip Radiographs and Patient Clinical Covariates
    Yamamoto, Norio
    Sukegawa, Shintaro
    Kitamura, Akira
    Goto, Ryosuke
    Noda, Tomoyuki
    Nakano, Keisuke
    Takabatake, Kiyofumi
    Kawai, Hotaka
    Nagatsuka, Hitoshi
    Kawasaki, Keisuke
    Furuki, Yoshihiko
    Ozaki, Toshifumi
    BIOMOLECULES, 2020, 10 (11) : 1 - 13
  • [49] Evaluation of artificial intelligence models for osteoarthritis of the knee using deep learning algorithms for orthopedic radiographs
    Tiwari, Anjali
    Poduval, Murali
    Bagaria, Vaibhav
    WORLD JOURNAL OF ORTHOPEDICS, 2022, 13 (06): : 603 - 614
  • [50] Detection of periodontal bone loss patterns and furcation defects from panoramic radiographs using deep learning algorithm: a retrospective study
    Kurt-Bayrakdar, Sevda
    Bayrakdar, Ibrahim Sevki
    Yavuz, Muhammet Burak
    Sali, Nichal
    Celik, Ozer
    Kose, Oguz
    Uzun Saylan, Bilge Cansu
    Kuleli, Batuhan
    Jagtap, Rohan
    Orhan, Kaan
    BMC ORAL HEALTH, 2024, 24 (01)