Enhanced Osteoporosis Detection Using Artificial Intelligence: A Deep Learning Approach to Panoramic Radiographs with an Emphasis on the Mental Foramen

被引:3
|
作者
Gaudin, Robert [1 ,2 ,3 ,4 ]
Otto, Wolfram [1 ,2 ,3 ]
Ghanad, Iman [1 ,2 ,3 ]
Kewenig, Stephan [1 ,2 ,3 ]
Rendenbach, Carsten [1 ,2 ,3 ]
Alevizakos, Vasilios [5 ]
Grun, Pascal [6 ]
Kofler, Florian [7 ,8 ]
Heiland, Max [1 ,2 ,3 ]
von See, Constantin [5 ]
机构
[1] Charite Univ Med Berlin, Augustenburger Pl 1, D-13353 Berlin, Germany
[2] Free Univ Berlin, Augustenburger Pl 1, D-13353 Berlin, Germany
[3] Humboldt Univ, Dept Oral & Maxillofacial Surg, Augustenburger Pl 1, D-13353 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, D-10117 Berlin, Germany
[5] Danube Private Univ, Ctr Digital Technol Dent & CAD CAM, A-3500 Krems An Der Donau, Austria
[6] Danube Private Univ, Fac Med Dent Med, Ctr Oral & Maxillofacial Surg, A-3500 Krems An Der Donau, Austria
[7] Helmholtz Zentrum Munchen, Helmholtz AI, Ingostaedter Landstr 1, D-85764 Oberschleissheim, Germany
[8] Tech Univ Munich, TUM Neuroimaging Ctr, Klinikum Rechts Isar, D-81675 Munich, Germany
关键词
osteoporosis detection; deep learning; panoramic radiographs; convolutional neural network (CNN); early diagnostic tool; BONE-DENSITY; MANAGEMENT; DIAGNOSIS; INDEX;
D O I
10.3390/medsci12030049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteoporosis, a skeletal disorder, is expected to affect 60% of women aged over 50 years. Dual-energy X-ray absorptiometry (DXA) scans, the current gold standard, are typically used post-fracture, highlighting the need for early detection tools. Panoramic radiographs (PRs), common in annual dental evaluations, have been explored for osteoporosis detection using deep learning, but methodological flaws have cast doubt on otherwise optimistic results. This study aims to develop a robust artificial intelligence (AI) application for accurate osteoporosis identification in PRs, contributing to early and reliable diagnostics. A total of 250 PRs from three groups (A: osteoporosis group, B: non-osteoporosis group matching A in age and gender, C: non-osteoporosis group differing from A in age and gender) were cropped to the mental foramen region. A pretrained convolutional neural network (CNN) classifier was used for training, testing, and validation with a random split of the dataset into subsets (A vs. B, A vs. C). Detection accuracy and area under the curve (AUC) were calculated. The method achieved an F1 score of 0.74 and an AUC of 0.8401 (A vs. B). For young patients (A vs. C), it performed with 98% accuracy and an AUC of 0.9812. This study presents a proof-of-concept algorithm, demonstrating the potential of deep learning to identify osteoporosis in dental radiographs. It also highlights the importance of methodological rigor, as not all optimistic results are credible.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Detection of dental caries under fixed dental prostheses by analyzing digital panoramic radiographs with artificial intelligence algorithms based on deep learning methods
    Ayhan, Betuel
    Ayan, Enes
    Atsu, Saadet
    BMC ORAL HEALTH, 2025, 25 (01):
  • [32] Quantitative level determination of fixed restorations on panoramic radiographs using deep learning
    Top, Ahmet Esad
    Ozdogan, Mahmut Sertac
    Yeniad, Mustafa
    INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY, 2023, 26 (04) : 285 - 299
  • [33] Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
    Rohrer, Csaba
    Krois, Joachim
    Patel, Jay
    Meyer-Lueckel, Hendrik
    Rodrigues, Jonas Almeida
    Schwendicke, Falk
    DIAGNOSTICS, 2022, 12 (06)
  • [34] Deep Learning-Based Periapical Lesion Detection on Panoramic Radiographs
    Szabo, Viktor
    Orhan, Kaan
    Dobo-Nagy, Csaba
    Veres, Daniel Sandor
    Manulis, David
    Ezhov, Matvey
    Sanders, Alex
    Szabo, Bence Tamas
    DIAGNOSTICS, 2025, 15 (04)
  • [35] Automatic detection of the third molar and mandibular canal on panoramic radiographs based on deep learning
    Fang, Xinle
    Zhang, Shengben
    Wei, Zhiyuan
    Wang, Kaixin
    Yang, Guanghui
    Li, Chengliang
    Han, Min
    Du, Mi
    JOURNAL OF STOMATOLOGY ORAL AND MAXILLOFACIAL SURGERY, 2024, 125 (04)
  • [36] Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs
    Orhan, Kaan
    Belgin, Ceren Aktuna
    Manulis, David
    Golitsyna, Maria
    Bayrak, Seval
    Aksoy, Secil
    Sanders, Alex
    Onder, Merve
    Ezhov, Matvey
    Shamshiev, Mamat at
    Gusarev, Maxim
    Shlenskii, Vladislav
    IMAGING SCIENCE IN DENTISTRY, 2023, 53 (03) : 199 - 207
  • [37] Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system
    Basaran, Melike
    Celik, Ozer
    Bayrakdar, Ibrahim Sevki
    Bilgir, Elif
    Orhan, Kaan
    Odabas, Alper
    Aslan, Ahmet Faruk
    Jagtap, Rohan
    ORAL RADIOLOGY, 2022, 38 (03) : 363 - 369
  • [38] Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system
    Melike Başaran
    Özer Çelik
    Ibrahim Sevki Bayrakdar
    Elif Bilgir
    Kaan Orhan
    Alper Odabaş
    Ahmet Faruk Aslan
    Rohan Jagtap
    Oral Radiology, 2022, 38 : 363 - 369
  • [39] A DEEP-LEARNING MODEL FOR IDIOPATHIC OSTEOSCLEROSIS DETECTION ON PANORAMIC RADIOGRAPHS
    Yesiltepe, Selin
    Bayrakdar, Ibrahim Sevki
    Orhan, Kaan
    Celik, Ozer
    Bilgir, Elif
    Aslan, Ahmet Faruk
    Odaba, Alper
    Costa, Andre Luiz Ferreira
    Jagtap, Rohan
    MEDICAL PRINCIPLES AND PRACTICE, 2022, 31 (06) : 555 - 561
  • [40] Detection of unilateral and bilateral cleft alveolus on panoramic radiographs using a deep-learning system
    Kuwada, Chiaki
    Ariji, Yoshiko
    Kise, Yoshitaka
    Fukuda, Motoki
    Ota, Jun
    Ohara, Hisanobu
    Kojima, Norinaga
    Ariji, Eiichiro
    DENTOMAXILLOFACIAL RADIOLOGY, 2023, 52 (08)