Enhanced Osteoporosis Detection Using Artificial Intelligence: A Deep Learning Approach to Panoramic Radiographs with an Emphasis on the Mental Foramen

被引:3
|
作者
Gaudin, Robert [1 ,2 ,3 ,4 ]
Otto, Wolfram [1 ,2 ,3 ]
Ghanad, Iman [1 ,2 ,3 ]
Kewenig, Stephan [1 ,2 ,3 ]
Rendenbach, Carsten [1 ,2 ,3 ]
Alevizakos, Vasilios [5 ]
Grun, Pascal [6 ]
Kofler, Florian [7 ,8 ]
Heiland, Max [1 ,2 ,3 ]
von See, Constantin [5 ]
机构
[1] Charite Univ Med Berlin, Augustenburger Pl 1, D-13353 Berlin, Germany
[2] Free Univ Berlin, Augustenburger Pl 1, D-13353 Berlin, Germany
[3] Humboldt Univ, Dept Oral & Maxillofacial Surg, Augustenburger Pl 1, D-13353 Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Inst Hlth, D-10117 Berlin, Germany
[5] Danube Private Univ, Ctr Digital Technol Dent & CAD CAM, A-3500 Krems An Der Donau, Austria
[6] Danube Private Univ, Fac Med Dent Med, Ctr Oral & Maxillofacial Surg, A-3500 Krems An Der Donau, Austria
[7] Helmholtz Zentrum Munchen, Helmholtz AI, Ingostaedter Landstr 1, D-85764 Oberschleissheim, Germany
[8] Tech Univ Munich, TUM Neuroimaging Ctr, Klinikum Rechts Isar, D-81675 Munich, Germany
关键词
osteoporosis detection; deep learning; panoramic radiographs; convolutional neural network (CNN); early diagnostic tool; BONE-DENSITY; MANAGEMENT; DIAGNOSIS; INDEX;
D O I
10.3390/medsci12030049
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Osteoporosis, a skeletal disorder, is expected to affect 60% of women aged over 50 years. Dual-energy X-ray absorptiometry (DXA) scans, the current gold standard, are typically used post-fracture, highlighting the need for early detection tools. Panoramic radiographs (PRs), common in annual dental evaluations, have been explored for osteoporosis detection using deep learning, but methodological flaws have cast doubt on otherwise optimistic results. This study aims to develop a robust artificial intelligence (AI) application for accurate osteoporosis identification in PRs, contributing to early and reliable diagnostics. A total of 250 PRs from three groups (A: osteoporosis group, B: non-osteoporosis group matching A in age and gender, C: non-osteoporosis group differing from A in age and gender) were cropped to the mental foramen region. A pretrained convolutional neural network (CNN) classifier was used for training, testing, and validation with a random split of the dataset into subsets (A vs. B, A vs. C). Detection accuracy and area under the curve (AUC) were calculated. The method achieved an F1 score of 0.74 and an AUC of 0.8401 (A vs. B). For young patients (A vs. C), it performed with 98% accuracy and an AUC of 0.9812. This study presents a proof-of-concept algorithm, demonstrating the potential of deep learning to identify osteoporosis in dental radiographs. It also highlights the importance of methodological rigor, as not all optimistic results are credible.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Deep Learning Approach to Automatic Tooth Detection and Numbering in Panoramic Radiographs: An Artificial Intelligence Study
    Mertoglu, Dogachan
    Keser, Gaye
    Pekiner, Filiz Namdar
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Orhan, Kaan
    CLINICAL AND EXPERIMENTAL HEALTH SCIENCES, 2023, 13 (04): : 883 - 888
  • [2] Automatic detection of mesiodens on panoramic radiographs using artificial intelligence
    Ha, Eun-Gyu
    Jeon, Kug Jin
    Kim, Young Hyun
    Kim, Jae-Young
    Han, Sang-Sun
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Segmentation of periapical lesions with automatic deep learning on panoramic radiographs: an artificial intelligence study
    Boztuna, Mehmet
    Firincioglulari, Mujgan
    Akkaya, Nurullah
    Orhan, Kaan
    BMC ORAL HEALTH, 2024, 24 (01):
  • [4] An artificial intelligence approach to automatic tooth detection and numbering in panoramic radiographs
    Bilgir, Elif
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Orhan, Kaan
    Akkoca, Fatma
    Saglam, Hande
    Odabas, Alper
    Aslan, Ahmet Faruk
    Ozcetin, Cemre
    Killi, Musa
    Rozylo-Kalinowska, Ingrid
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [5] Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning
    Ba-Hattab, Raidan
    Barhom, Noha
    Osman, Safa A. Azim
    Naceur, Iheb
    Odeh, Aseel
    Asad, Arisha
    Al-Najdi, Shahd Ali R. N.
    Ameri, Ehsan
    Daer, Ammar
    Da Silva, Renan L. B.
    Costa, Claudio
    Cortes, Arthur R. G.
    Tamimi, Faleh
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [6] Detection of carotid plaques on panoramic radiographs using deep learning
    Vinayahalingam, Shankeeth
    van Nistelrooij, Niels
    Xi, Tong
    Heiland, Max
    Bressem, Keno
    Rendenbach, Carsten
    Fluegge, Tabea
    Gaudin, Robert
    JOURNAL OF DENTISTRY, 2024, 151
  • [7] Fully Automated Detection of Osteoporosis Stage on Panoramic Radiographs Using YOLOv5 Deep Learning Model and Designing a Graphical User Interface
    Ozic, Muhammet Usame
    Tassoker, Melek
    Yuce, Fatma
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (06) : 715 - 731
  • [8] The detection of distomolar teeth on panoramic radiographs using different artificial intelligence models
    Korkmaz, Onur Erdem
    Guller, Hatice
    Miloglu, Ozkan
    Ozbek, Ibrahim Yucel
    Oral, Emin Argun
    Guller, Mustafa Taha
    JOURNAL OF STOMATOLOGY ORAL AND MAXILLOFACIAL SURGERY, 2025, 126 (05)
  • [9] The role of deep learning for periapical lesion detection on panoramic radiographs
    Celik, Berrin
    Savastaer, Ertugrul Furkan
    Kaya, Halil Ibrahim
    Celik, Mahmut Emin
    DENTOMAXILLOFACIAL RADIOLOGY, 2023, 52 (08)
  • [10] Automated detection of dental restorations using deep learning on panoramic radiographs
    Celik, Berrin
    Celik, Mahmut Emin
    DENTOMAXILLOFACIAL RADIOLOGY, 2022, 51 (08)