The role of semicentral idempotents in triangular matrix rings

被引:0
作者
Vladeva, D. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Algebra & Log, Sofia, Bulgaria
关键词
Idempotents; matrix rings; triangular matrices; PRODUCTS;
D O I
10.1080/00927872.2024.2398629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The circle composition e1 degrees e2=e1+e2-e1e2 is well-known from the seminal book of Jacobson. A part of our motivation aims to find non-orthogonal idempotents e1 and e2 such that e1 degrees e2 is an idempotent. Such idempotents are the products rl where r is a right semicentral and l is a left semicentral idempotent of the ring of upper triangular matrices over a ring. We prove that in the semigroup of upper triangular matrices over ring with only trivial idempotents every idempotent matrix can be represented as a circle composition of products of the type rl.
引用
收藏
页码:1024 / 1038
页数:15
相关论文
共 50 条
  • [31] Rings Whose Elements are Sums of Three or Differences of Two Commuting Idempotents
    Peter V. Danchev
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 1641 - 1651
  • [32] Matrix Rings over Reflexive Rings
    Cheon, Jeoung Soo
    Kwak, Tai Keun
    Lee, Yang
    ALGEBRA COLLOQUIUM, 2018, 25 (03) : 459 - 474
  • [33] Presentations of matrix rings
    Kassabov, Martin
    GROUPS COMPLEXITY CRYPTOLOGY, 2010, 2 (01) : 51 - 57
  • [34] Rational Group Algebras of Finite Groups: From Idempotents to Units of Integral Group Rings
    Eric Jespers
    Gabriela Olteanu
    Ángel del Río
    Algebras and Representation Theory, 2012, 15 : 359 - 377
  • [35] Strongly clean triangular matrices over abelian rings
    Diesl, Alexander J.
    Dorsey, Thomas J.
    Iberkleid, Wolf
    LaFuente-Rodriguez, Ramiro
    McGovern, Warren Wm
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (11) : 4889 - 4906
  • [36] Products of three triangular matrices over commutative rings
    Nagarajan, KR
    Devasahayam, MP
    Soundararajan, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 348 (348) : 1 - 6
  • [37] On products of three triangular matrices over associative rings
    Chen, HY
    Chen, MS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 : 297 - 311
  • [38] Strongly clean matrix rings over local rings
    Li, Yuanlin
    JOURNAL OF ALGEBRA, 2007, 312 (01) : 397 - 404
  • [39] Endomorphisms of upper triangular matrix semirings
    Vladeva, D. I.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (02) : 822 - 835
  • [40] Generalized commutators in matrix rings
    Khurana, Dinesh
    Lam, T. Y.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (07) : 797 - 827