Gold oxide formation on Au(111) under CO oxidation conditions at room temperature

被引:0
作者
Wenzel, Sabine [1 ,2 ]
Boden, Dajo [1 ]
Groot, Irene M. N. [1 ]
机构
[1] Leiden Inst Chem, Einsteinweg 55, NL-2333 CC Leiden, Netherlands
[2] Univ Marburg, Dept Chem, Marburg, Germany
基金
荷兰研究理事会;
关键词
DENSITY-FUNCTIONAL THEORY; INVERSE OXIDE/METAL CATALYSTS; SCANNING-TUNNELING-MICROSCOPY; CARBON-MONOXIDE; PREFERENTIAL OXIDATION; SURFACE-CHEMISTRY; MOLECULAR-OXYGEN; DISSOCIATION; ADSORPTION; NANOPARTICLES;
D O I
10.1039/d4cp00611a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although gold-based catalysts are promising candidates for selective low-temperature CO oxidation, the reaction mechanism is not fully understood. On a Au(111) model catalyst, we observe the formation of gold oxide islands under exposure to atmospheric pressures of oxygen or CO oxidation reaction conditions in an in situ scanning tunneling microscope. The gold oxide formation is interpreted in line with the water-enabled dissociation of O2 on the step edges of Au(111). Contaminants on the gold surface can strongly promote the gold oxide formation even on the terraces. On the other hand, TiO2 nanoparticles on the Au(111) do not show any influence on the formation of the gold oxide and are thus not providing a significant amount of atomic oxygen to the gold at room temperature. Overall, the presence of gold oxide is likely under industrial conditions. On a Au(111) model catalyst, we observe the formation of gold oxide islands under exposure to atmospheric pressures of oxygen or CO oxidation reaction conditions in an in situ scanning tunneling microscope.
引用
收藏
页码:23623 / 23630
页数:8
相关论文
共 77 条
[1]  
airliquide, PRODUCT INFORM AIR L
[2]  
[Anonymous], 2014, LEEDPAT VERSION 42 U
[3]   Competition between Polar and Nonpolar Growth of MgO Thin Films on Au(111) [J].
Benedetti, S. ;
Nilius, N. ;
Torelli, P. ;
Renaud, G. ;
Freund, H. -J. ;
Valeri, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (46) :23043-23049
[4]   Synthesis of TiO2 nanoparticles on the Au(111) surface -: art. no. 094705 [J].
Biener, J ;
Farfan-Arribas, E ;
Biener, M ;
Friend, CM ;
Madix, RJ .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (09)
[5]   Growth of nanocrystalline MoO3 on Au(111) studied by in situ scanning tunneling microscopy [J].
Biener, MM ;
Biener, J ;
Schalek, R ;
Friend, CM .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (23) :12010-12016
[6]   Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Noble Metals and Transition Metal Oxides: Advantages and Drawbacks [J].
Bion, Nicolas ;
Epron, Florence ;
Moreno, Maximo ;
Marino, Fernando ;
Duprez, Daniel .
TOPICS IN CATALYSIS, 2008, 51 (1-4) :76-88
[7]   Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction [J].
Boronat, Mercedes ;
Corma, Avelino .
DALTON TRANSACTIONS, 2010, 39 (36) :8538-8546
[8]   Recent advances in understanding CO oxidation on gold nanoparticles using density functional theory [J].
Chen, Ying ;
Crawford, Paul ;
Hu, P. .
CATALYSIS LETTERS, 2007, 119 (1-2) :21-28
[9]   Characterization by scanning tunneling microscopy of the oxygen induced restructuring of Au(111) [J].
Chevrier, J ;
Huang, L ;
Zeppenfeld, P ;
Comsa, G .
SURFACE SCIENCE, 1996, 355 (1-3) :1-12
[10]   Low-temperature cold-start gaseous emissions of late technology passenger cars [J].
Dardiotis, Christos ;
Martini, Giorgio ;
Marotta, Alessandro ;
Manfredi, Urbano .
APPLIED ENERGY, 2013, 111 :468-478