INTERACTION OF LIQUID CRYSTALS WITH A RIGID BODY

被引:0
作者
Binz, Tim [1 ]
Brandt, Felix [2 ]
Hieber, Matthias [2 ]
Roy, Arnab [2 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Tech Univ Darmstadt, Schlossgartenstr 7, D-64289 Darmstadt, Germany
关键词
Liquid crystal-rigid body interaction; Ericksen-Leslie model; fluid- structure interaction; strong solutions; convergence to equilibria; WEAK SOLUTIONS; MOTION; EXISTENCE; EQUATIONS; FLOW; DYNAMICS;
D O I
10.1090/tran/9242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article investigates the interaction of nematic liquid crystals modeled by a simplified Ericksen-Leslie model with a rigid body. It is shown that this problem is locally strongly well-posed, and that it also admits a unique, global strong solution for initial data close to constant equilibria. The proof of the global strong solution relies on a new splitting method for the director in a mean value zero and average part.
引用
收藏
页码:8049 / 8090
页数:42
相关论文
共 46 条
[1]  
Amann Herbert, 1995, Monographs in Mathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[2]   Rigorous analysis of the interaction problem of sea ice with a rigid body [J].
Binz, Tim ;
Brandt, Felix ;
Hieber, Matthias .
MATHEMATISCHE ANNALEN, 2024, 389 (01) :591-625
[3]  
BOGOVSKII ME, 1979, DOKL AKAD NAUK SSSR+, V248, P1037
[4]  
Conca C, 2000, COMMUN PART DIFF EQ, V25, P1019
[5]   Motion of an elastic solid inside an incompressible viscous fluid [J].
Coutand, D ;
Shkoller, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (01) :25-102
[6]   Banach space operators with a bounded H infinity functional calculus [J].
Cowling, M ;
Doust, I ;
McIntosh, A ;
Yagi, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 :51-89
[7]   WELLPOSEDNESS FOR THE SYSTEM MODELLING THE MOTION OF A RIGID BODY OF ARBITRARY FORM IN AN INCOMPRESSIBLE VISCOUS FLUID [J].
Cumsille, Patricio ;
Takahashi, Takeo .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) :961-992
[8]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[9]   Existence of weak solutions for the motion of rigid bodies in a viscous fluid [J].
Desjardins, B ;
Esteban, MJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 146 (01) :59-71
[10]  
Desjardins B, 2000, COMMUN PART DIFF EQ, V25, P1399