Campanato-Morrey spaces and variable Riesz potentials

被引:1
作者
Ohno, T. [1 ]
Shimomura, T. [2 ]
机构
[1] Oita Univ, Fac Educ, Dannoharu Oita city 8701192, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima 7398524, Japan
关键词
BMO; grand Morrey space; Riesz potential; Campanato-Morrey space; variable exponent; SOBOLEV EMBEDDINGS; LEBESGUE SPACES; GRAND; INTEGRABILITY; BOUNDEDNESS; INTEGRALS; OPERATORS; THEOREM;
D O I
10.1007/s10474-024-01465-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim in this note is to show that the variable Riesz potential operator I alpha(<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha(\cdot)}$$\end{document} embeds variable exponent grand Morrey spaces Lp(<middle dot>)-0,nu(<middle dot>),theta(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{p(\cdot)-0,\nu(\cdot),\theta}(G)$$\end{document} into Campanato-Morrey spaces.
引用
收藏
页码:62 / 74
页数:13
相关论文
共 29 条
[1]   Sobolev embeddings into spaces of Campanato, Morrey, and Holder type [J].
Cianchi, A ;
Pick, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (01) :128-150
[2]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[3]   A direct approach to the duality of grand and small Lebesgue spaces [J].
Di Fratta, Giovanni ;
Fiorenza, Alberto .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) :2582-2592
[4]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[5]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[6]  
Fiorenza A, 1998, STUD MATH, V127, P223
[7]   ON GRAND AND SMALL LEBESGUE AND SOBOLEV SPACES AND SOME APPLICATIONS TO PDE'S [J].
Fiorenza, Alberto ;
Formica, Maria Rosaria ;
Gogatishvili, Amiran .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (01) :21-46
[8]   The maximal theorem for weighted grand Lebesgue spaces [J].
Fiorenza, Alberto ;
Gupta, Babita ;
Jain, Pankaj .
STUDIA MATHEMATICA, 2008, 188 (02) :123-133
[9]  
Futamura T., 2014, OHNO T SOBOLEVS THEO, P353
[10]   Sobolev embeddings, extensions and measure density condition [J].
Hajlasz, Piotr ;
Koskela, Pekka ;
Tuominen, Heli .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1217-1234