Parity-time-symmetry-enabled broadband quantum frequency-comb generation

被引:0
作者
Chen, Nuo [1 ]
Chi, Wuqiang [1 ]
Fan, Yunru [2 ]
Li, Hanghang [1 ]
Wang, Zijie [1 ]
Zhou, Qiang [2 ,3 ]
Xu, Jing [1 ,4 ,5 ]
Zhang, Xinliang [4 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[3] Tianfu Jiangxi Lab, Ctr Quantum Internet, Chengdu 641419, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[5] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTON PAIR SOURCE; ENTANGLEMENT; STATES;
D O I
10.1103/PhysRevA.110.023714
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microcavities stand out as competitive tools in the development of quantum frequency combs (QFCs) for multiphoton entanglement sources, frequency-multiplexed single-photon sources, and the generation of high-dimensional entangled states. However, the presence of waveguide dispersion hinders the creation of broadband QFCs, an issue that becomes increasingly critical as the quality factor of the microcavity increases. Here, we present a scheme to enhance the spectral range of QFCs by selectively manipulating the pump resonance via parity-time symmetry. We show that by using pulsed pump light to cover the pump resonance, frequency-matching conditions can be relaxed and the spectral range of QFCs can thus be significantly extended near the exceptional point. The proposed method offers a simple, effective, and robust approach to increase the dimension of QFCs, without severely sacrificing nonlinear efficiency.
引用
收藏
页数:8
相关论文
共 51 条
  • [1] Multimode entanglement in reconfigurable graph states using optical frequency combs
    Cai, Y.
    Roslund, J.
    Ferrini, G.
    Arzani, F.
    Xu, X.
    Fabre, C.
    Treps, N.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Integrated sources of photon quantum states based on nonlinear optics
    Caspani, Lucia
    Xiong, Chunle
    Eggleton, Benjamin J.
    Bajoni, Daniele
    Liscidini, Marco
    Galli, Matteo
    Morandotti, Roberto
    Moss, David J.
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e17100 - e17100
  • [3] Chang L, 2014, NAT PHOTONICS, V8, P524, DOI [10.1038/NPHOTON.2014.133, 10.1038/nphoton.2014.133]
  • [4] Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator
    Chen, Jun
    Levine, Zachary H.
    Fan, Jingyun
    Migdall, Alan L.
    [J]. OPTICS EXPRESS, 2011, 19 (02): : 1470 - 1483
  • [5] Pushing photon-pair generation rate in microresonators by Q factor manipulation
    Chen, Nuo
    Wang, Zijie
    Wu, Jingpeng
    Li, Hanghang
    He, Shiqi
    Fan, Zhuang
    Fan, Yunru
    Zhang, Xinliang
    Zhou, Qiang
    Xu, Jing
    [J]. OPTICS LETTERS, 2023, 48 (20) : 5355 - 5358
  • [6] Advances in high-dimensional quantum entanglement
    Erhard, Manuel
    Krenn, Mario
    Zeilinger, Anton
    [J]. NATURE REVIEWS PHYSICS, 2020, 2 (07) : 365 - 381
  • [7] Multi-Wavelength Quantum Light Sources on Silicon Nitride Micro-Ring Chip
    Fan, Yun-Ru
    Lyu, Chen
    Yuan, Chen-Zhi
    Deng, Guang-Wei
    Zhou, Zhi-Yuan
    Geng, Yong
    Song, Hai-Zhi
    Wang, You
    Zhang, Yan-Feng
    Jin, Rui-Bo
    Zhou, Heng
    You, Li-Xing
    Wang, Zhen
    Guo, Guang-Can
    Zhou, Qiang
    [J]. LASER & PHOTONICS REVIEWS, 2023, 17 (10)
  • [8] Non-Hermitian photonics based on parity-time symmetry
    Feng, Liang
    El-Ganainy, Ramy
    Ge, Li
    [J]. NATURE PHOTONICS, 2017, 11 (12) : 752 - 762
  • [9] Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator
    Fujiwara, Mikio
    Wakabayashi, Ryota
    Sasaki, Masahide
    Takeoka, Masahiro
    [J]. OPTICS EXPRESS, 2017, 25 (04): : 3445 - 3453
  • [10] Quantum optics of soliton microcombs
    Guidry, Melissa A.
    Lukin, Daniil M.
    Yang, Ki Youl
    Trivedi, Rahul
    Vuckovic, Jelena
    [J]. NATURE PHOTONICS, 2022, 16 (01) : 52 - +