Cardiac-gated spectroscopic photoacoustic imaging for ablation-induced necrotic lesion visualization

被引:5
作者
Gao, Shang [1 ]
Ashikaga, Hiroshi [2 ]
Suzuki, Masahito [2 ]
Mansi, Tommaso [3 ]
Kim, Young-Ho [3 ]
Ghesu, Florin-Cristian [3 ]
Kang, Jeeun [4 ,5 ]
Boctor, Emad M. [4 ,5 ]
Halperin, Henry R. [2 ]
Zhang, Haichong K. [1 ,6 ,7 ]
机构
[1] Worcester Polytech Inst, Dept Robot Engn, 100 Inst Rd, Worcester, MA 01609 USA
[2] Johns Hopkins Univ, Dept Med, Div Cardiol, Sch Med, Baltimore, MD USA
[3] Siemens Healthineers, Digital Technol & Innovat, Princeton, NJ USA
[4] Johns Hopkins Univ, Sch Med, Dept Radiol & Radiol Sci, Baltimore, MD USA
[5] Johns Hopkins Univ, Whiting Sch Engn, Lab Computat Sensing & Robot, Baltimore, MD USA
[6] Worcester Polytech Inst, Dept Biomed Engn, Worcester, MA USA
[7] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA USA
基金
美国国家卫生研究院;
关键词
cardiac ablation; cardiac gating; image-guided intervention; in vivo demonstration; spectroscopic photoacoustic imaging; ATRIAL-FIBRILLATION; IN-VIVO; CONTACT FORCE; REAL-TIME; CATHETER; PLAQUES; TOMOGRAPHY; TUMORS;
D O I
10.1002/jbio.202400126
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Radiofrequency (RF) ablation is a minimally invasive therapy for atrial fibrillation. Conventional RF procedures lack intraoperative monitoring of ablation-induced necrosis, complicating assessment of completeness. While spectroscopic photoacoustic (sPA) imaging shows promise in distinguishing ablated tissue, multi-spectral imaging is challenging in vivo due to low imaging quality caused by motion. Here, we introduce a cardiac-gated sPA imaging (CG-sPA) framework to enhance image quality using a motion-gated averaging filter, relying on image similarity. Necrotic extent was calculated based on the ratio between spectral unmixed ablated tissue contrast and total tissue contrast, visualizing as a continuous color map to highlight necrotic area. The validation of the concept was conducted in both ex vivo and in vivo swine models. The ablation-induced necrotic lesion was successfully detected throughout the cardiac cycle through CG-sPA imaging. The results suggest the CG-sPA imaging framework has great potential to be incorporated into clinical workflow to guide ablation procedures intraoperatively. This study proposed a framework for spectroscopic PA imaging in the challenging setting of a beating heart, implementing cardiac gating based on image similarity to address tissue motion during the cardiac cycle and enhance imaging quality. We assess the feasibility of the method by identifying ablation-induced lesions through spectral analysis. The study demonstrates enhanced imaging quality and accurate assessment of ablation-induced necrotic lesions on the beating heart in both ex vivo and in vivo swine models.image
引用
收藏
页数:17
相关论文
共 17 条
[1]   Photoacoustic frequency analysis of the ablation-induced necrosis lesion [J].
Gao, Shang ;
Murakami, Ryo ;
Zhang, Haichong K. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2024, 2024, 12842
[2]   Clinical Impact of Cardiac-Gated PET Imaging [J].
Nekolla, Stephan G. ;
Dinges, Julia ;
Rischpler, Christoph .
PET CLINICS, 2013, 8 (01) :69-+
[3]   Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium [J].
Iskander-Rizk, Sophinese ;
Kruizinga, Pieter ;
van der Steen, Antonius F. W. ;
van Soest, Gijs .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (03) :1309-1322
[4]   Catheter Ablation Lesion Visualization With Intracardiac Strain Imaging in Canines and Humans [J].
Sayseng, Vincent ;
Grondin, Julien ;
Salgaonkar, Vasant A. ;
Grubb, Christopher S. ;
Basij, Maryam ;
Mehrmohammadi, Mohammad ;
Iyer, Vivek ;
Wang, Daniel ;
Garan, Hasan ;
Wan, Elaine Y. ;
Konofagou, Elisa E. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (09) :1800-1810
[5]   Four-Dimensional Image Reconstruction Strategies in Cardiac-Gated and Respiratory-Gated PET Imaging [J].
Rahmim, Arman ;
Tang, Jing ;
Zaidi, Habib .
PET CLINICS, 2013, 8 (01) :51-+
[6]   Development and implementation of a high-performance, cardiac-gated dual-energy imaging system [J].
Shkumat, N. A. ;
Siewerdsen, J. H. ;
Dhanantwari, A. C. ;
Williams, D. B. ;
Richard, S. ;
Tward, D. J. ;
Paul, N. S. ;
Yorkston, J. ;
Van Metter, R. .
MEDICAL IMAGING 2007: PHYSICS OF MEDICAL IMAGING, PTS 1-3, 2007, 6510
[7]   Comparison of preexisting and ablation-induced late gadolinium enhancement on left atrial magnetic resonance imaging [J].
Fukumoto, Kotaro ;
Habibi, Mohammadali ;
Ipek, Esra Gucuk ;
Khurram, Irfan M. ;
Zimmerman, Stefan L. ;
Zipunnikov, Vadim ;
Spragg, David D. ;
Ashikaga, Hiroshi ;
Rickard, John ;
Marine, Joseph E. ;
Berger, Ronald D. ;
Calkins, Hugh ;
Nazarian, Saman .
HEART RHYTHM, 2015, 12 (04) :668-672
[8]   Cardiac magnetic resonance for early atrial lesion visualization post atrial fibrillation radiofrequency catheter ablation [J].
Guglielmo, Marco ;
Rier, Sophie ;
De Zan, Giulia ;
Krafft, Axel J. ;
Schmidt, Michaela ;
Kunze, Karl P. ;
Botnar, Rene M. ;
Prieto, Claudia ;
van der Heijden, Jeroen ;
Van Driel, Vincent ;
Ramanna, Hemanth ;
van der Harst, Pim ;
van der Bilt, Ivo .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2024, 35 (02) :258-266
[9]   Atrial Ablation Lesion Evaluation by Cardiac Magnetic Resonance Review of Imaging Strategies and Histological Correlations [J].
Hopman, Luuk H. G. A. ;
van Pouderoijen, Nikki ;
Mulder, Mark J. ;
van der Laan, Anja M. ;
Bhagirath, Pranav ;
Nazarian, Saman ;
Niessen, Hans W. M. ;
Ferrari, Victor A. ;
Allaart, Cornelis P. ;
Gotte, Marco J. W. .
JACC-CLINICAL ELECTROPHYSIOLOGY, 2023, 9 (12) :2665-2679
[10]   In Vivo Assessment of Cardiac Radiofrequency Ablation in a Large-Animal Model Using Photoacoustic-Ultrasound Imaging [J].
Mathuria, Nilesh ;
Vishwanath, Krithik ;
Fallon, Blake C. ;
Martino, Antonio ;
Brero, Giorgio ;
Willson, Richard C. ;
Valderrabano, Miguel ;
Filgueira, Carly S. ;
Bouchard, Richard R. .
JACC-CLINICAL ELECTROPHYSIOLOGY, 2024, 11 (05) :1024-1029