Fabricate and Test of Superconducting Dipole Magnet for FRIB

被引:0
作者
Zhou, Tao [1 ]
Li, Chao [2 ]
Liu, Wei [1 ]
Chen, Chuan [1 ]
Gao, Wei [1 ]
Li, Fengtai [1 ]
Zhang, Tao [1 ]
机构
[1] Xian Superconducting Magnet Technol Co Ltd, Xian 710016, Peoples R China
[2] Northwestern Polytech Univ, Xian 710072, Peoples R China
来源
PROCEEDINGS OF 2023 INTERNATIONAL CONFERENCE ON WIRELESS POWER TRANSFER, VOL 3, ICWPT 2023 | 2024年 / 1160卷
关键词
Superconducting magnets; dipole; high-energy physics; ramping up; operating current;
D O I
10.1007/978-981-97-0865-9_35
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
FRIB is a new generation radioactive isotope beam facility, which generates intense beams of particles composed of extremely rare nuclei that cannot be found on Earth, for the purpose of studying interactions in nuclear physics and nuclear astrophysics. With the rapid development of high-energy physics in recent years, the requirement that magnets must be made of superconducting materials has led to the demand for higher magnetic fields and greater reliability. The superconductive dipole magnet, as one of the essential components of FRIB, plays a crucial role in deflecting particles. In this work, a superconducting dipole magnet was fabricated and tested for FRIB. The magnet has a beam orbit with a total length of 2260 mm, a height of almost 2200 mm, and a width of 1660 mm, with the volume of the liquid helium vessel about 500 L. The peak field in the beam center under operating current is 2T, and the magnet consists of two low-temperature superconducting (HTS) rectangular coils. Each coil is operated with a current of 200 A. After a series of fabrication processes such as winding, terminal wire, impregnating, welding and assembly, the magnet was ramping up only one time at 4.2K to validate the design. The results of the first test were in excellent agreement with the objectives of the theoretical design, demonstrating the success of the magnet's fabrication.
引用
收藏
页码:326 / 333
页数:8
相关论文
共 10 条
[1]   Design and test of a curved superconducting dipole magnet for proton therapy [J].
Brouwer, L. ;
Caspi, S. ;
Edwards, K. ;
Godeke, A. ;
Hafalia, R. ;
Hodgkinson, A. ;
Huggins, A. ;
Myers, C. ;
Myers, S. ;
Schillo, M. ;
Taylor, J. ;
Turqueti, M. ;
Wang, X. ;
Wan, W. ;
Prestemon, S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 957
[2]  
Chen Y., 2018, IEEE Trans. Appl. Supercond., V29
[3]   A simulation study on proton accelerator-based sources for BNCT of shallow tumors [J].
Dorostkar, Mahdieh Mokhtari ;
Rasouli, Fatemeh S. ;
Salehkoutahi, S. Mohsen .
PROGRESS IN NUCLEAR ENERGY, 2022, 153
[4]  
Iwasa Y., 2010, Case Studies in Superconducting Magnets, P36
[5]   A large experimental apparatus for measuring thermal conductance of LH2 storage tank insulations [J].
Kamiya, S ;
Onishi, K ;
Kawagoe, E ;
Nishigaki, K .
CRYOGENICS, 2000, 40 (01) :35-44
[6]  
Kanjilal D., 2022, P HIAT09 VEN IT, P170
[7]  
Li C., 2022, Cryogenics Supercond., V50, P23
[8]  
Marti Z., 2004, P EPAC 2004 LUC SWIT, P1672
[9]   Advances of the FRIB project [J].
Wei, J. ;
Ao, H. ;
Beher, S. ;
Bultman, N. ;
Casagrande, F. ;
Cogan, S. ;
Compton, C. ;
Curtin, J. ;
Dalesio, L. ;
Davidson, K. ;
Dixon, K. ;
Facco, A. ;
Ganni, V. ;
Ganshyn, A. ;
Gibson, P. ;
Glasmacher, T. ;
Hao, Y. ;
Hodges, L. ;
Holland, K. ;
Hosoyama, K. ;
Hseuh, H. -C. ;
Hussain, A. ;
Ikegami, M. ;
Jones, S. ;
Kanemura, T. ;
Kelly, M. ;
Knudsen, P. ;
Laxdal, R. E. ;
LeTourneau, J. ;
Lidia, S. ;
Machicoane, G. ;
Marti, F. ;
Miller, S. ;
Momozaki, Y. ;
Morris, D. ;
Ostroumov, P. ;
Popielarski, J. ;
Popielarski, L. ;
Prestemon, S. ;
Priller, J. ;
Ren, H. ;
Russo, T. ;
Saito, K. ;
Stanley, S. ;
Wiseman, M. ;
Xu, T. ;
Yamazaki, Y. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2019, 28 (03)
[10]  
Wei J., 2018, 6 INT BEAM INSTR C U