HOMOTOPY PERTURBATION METHOD FOR SOLVING A NONLINEAR SYSTEM FOR AN EPIDEMIC

被引:5
作者
Alshomrani, Nada A. M. [1 ]
Alharbi, Weam G. [1 ]
Alanazi, Ibtisam M. A. [1 ]
Alyasi, Lujain S. M. [1 ]
Alrefaei, Ghadi N. M. [1 ]
Alamri, Seada A. [1 ]
Alanzi, Asmaa H. Q. [1 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 741, Tabuk 71491, Saudi Arabia
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2024年 / 31卷 / 03期
关键词
ordinary differential equation; homotopy perturbation method; initial value problem; series solution; DELAY-DIFFERENTIAL EQUATION; BOUNDARY-VALUE-PROBLEMS; FLUID; MODEL; FLOW;
D O I
10.17654/0974324324019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper solves the SIR-epidemic model utilizing the homotopy perturbation method (HPM). The HPM is applied in a different way in contrast to the HPM in the literature. The current approach uses a new canonical form for the system of the SIR-epidemic. The analytic solution is obtained and compared with the published one, in addition, to the Runge-Kutta numerical method. The results show better accuracy than the corresponding ones.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 22 条
[1]   CONVERGENCE OF ADOMIAN METHOD APPLIED TO NONLINEAR EQUATIONS [J].
ABBAOUI, K ;
CHERRUAULT, Y .
MATHEMATICAL AND COMPUTER MODELLING, 1994, 20 (09) :69-73
[2]   Exact and Numerical Analysis of the Pantograph Delay Differential Equation via the Homotopy Perturbation Method [J].
Albidah, Abdulrahman B. ;
Kanaan, Nourah E. ;
Ebaid, Abdelhalim ;
Al-Jeaid, Hind K. .
MATHEMATICS, 2023, 11 (04)
[3]   Advanced Study on the Delay Differential Equation y′ (t) = ay(t) plus by (ct) [J].
Alenazy, Aneefah H. S. ;
Ebaid, Abdelhalim ;
Algehyne, Ebrahem A. ;
Al-Jeaid, Hind K. .
MATHEMATICS, 2022, 10 (22)
[4]   Development of analytical solution for a generalized Ambartsumian equation [J].
Algehyne, Ebrahem A. ;
El-Zahar, Essam R. ;
Alharbi, Eahad M. ;
Ebaid, Abdelhalim .
AIMS MATHEMATICS, 2020, 5 (01) :249-258
[5]   Communicable disease model in view of fractional calculus [J].
Alharbi, Weam G. ;
Shater, Abdullah F. ;
Ebaid, Abdelhalim ;
Cattani, Carlo ;
Areshi, Mounirah ;
Jalal, Mohammed M. ;
Alharbi, Mohammed K. .
AIMS MATHEMATICS, 2023, 8 (05) :10033-10048
[6]   Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method [J].
Alshaery, Aisha ;
Ebaid, Abdelhallin .
ACTA ASTRONAUTICA, 2017, 140 :27-33
[7]   Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions [J].
Aly, Emad H. ;
Ebaid, Abdelhalim ;
Rach, Randolph .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (06) :1056-1065
[8]   Exact Solution of Ambartsumian Delay Differential Equation and Comparison with Daftardar-Gejji and Jafari Approximate Method [J].
Bakodah, Hauda O. ;
Ebaid, Abdelhalim .
MATHEMATICS, 2018, 6 (12)
[9]  
De Abajo J. G., 2020, medRxiv
[10]   A novel exact solution for the fractional Ambartsumian equation [J].
Ebaid, Abdelhalim ;
Cattani, Carlo ;
Al Juhani, Amnah S. ;
El-Zahar, Essam R. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)