Reconstruction of a Singular Source in a Fractional Subdiffusion Problem from a Single Point Measurement

被引:0
作者
Hrizi, M. [1 ]
Hajji, F. [2 ]
Prakash, R. [3 ]
Novotny, A. A. [4 ]
机构
[1] Monastir Univ, Fac Sci, Dept Math, Ave Environm, Monastir 5000, Tunisia
[2] Univ Tunis El Manar, Natl Engn Sch Tunis, LAMSIN, Tunis 1002, Tunisia
[3] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Matemat, Ave Esteban Iturra s-n,Casilla 160 C,Bairro Univ, Concepcion, Chile
[4] MCTI, Lab Nacl Computacao Cient LNCC, Coordenacao Metodos Matematicos & Computacionais, Ave Getulio Vargas 333, BR-25651075 Petropolis, RJ, Brazil
关键词
Singular time dependent source function; Inverse source problem; Time-fractional diffusion equation; Single point measurement; Topological derivative method; RANDOM-WALKS; SOURCE-TERM; DIFFUSION; IDENTIFICATION; DISPERSION; EQUATION; APPROXIMATIONS; RESOLUTION; STABILITY; TOPOLOGY;
D O I
10.1007/s00245-024-10185-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we reconstruct a singular time dependent source function of a fractional subdiffusion problem using observational data obtained from a single point of the boundary and inside of the domain. Specifically, the singular function under consideration is represented by the Dirac delta function which makes the analysis interesting as the temporal component of unknown source belongs to a Sobolev space of negative order. We establish the uniqueness of the examined inverse problem in both scenarios. In addition, we analyze local stability of the solution of our inverse problem. To numerically reconstruct a point-wise source, we use the techniques of topological derivatives by converting the inverse source problem in an optimization one. More precisely, we develop a second-order non-iterative reconstruction algorithm to achieve our goal. The efficacy of the proposed approach is substantiated through diverse numerical examples.
引用
收藏
页数:29
相关论文
共 64 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
Alessandrini G, 1997, INDIANA U MATH J, V46, P1
[3]  
Alessandrini G., 1988, Appl. Anal, V27, P153, DOI DOI 10.1080/00036818808839730
[4]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[5]  
Ammari H, 2013, LECT NOTES MATH, V2098, P1, DOI 10.1007/978-3-319-02585-8
[6]   Localization, Stability, and Resolution of Topological Derivative Based Imaging Functionals in Elasticity [J].
Ammari, Habib ;
Bretin, Elie ;
Garnier, Josselin ;
Jing, Wenjia ;
Kang, Hyeonbae ;
Wahab, Abdul .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04) :2174-2212
[7]   STABILITY AND RESOLUTION ANALYSIS FOR A TOPOLOGICAL DERIVATIVE BASED IMAGING FUNCTIONAL [J].
Ammari, Habib ;
Garnier, Josselin ;
Jugnon, Vincent ;
Kang, Hyeonbae .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (01) :48-76
[8]  
Ammari Habib, 2004, Lecture Notes in Mathematics, V1846
[9]   Identification of planar cracks by complete overdetermined data: Inversion formulae [J].
Andrieux, S ;
BenAbda, A .
INVERSE PROBLEMS, 1996, 12 (05) :553-563
[10]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138