Deep Learning for MRI Segmentation and Molecular Subtyping in Glioblastoma: Critical Aspects from an Emerging Field

被引:15
作者
Bonada, Marta [1 ,2 ]
Rossi, Luca Francesco [3 ]
Carone, Giovanni [2 ]
Panico, Flavio [1 ]
Cofano, Fabio [1 ]
Fiaschi, Pietro [4 ,5 ]
Garbossa, Diego [1 ]
Di Meco, Francesco [2 ]
Bianconi, Andrea [1 ,4 ]
机构
[1] Univ Turin, Dept Neurosci, Neurosurg Unit, Via Cherasco 15, I-10126 Turin, Italy
[2] Fdn IRCCS Ist Neurol Carlo Besta, Dept Neurosurg, Via Celoria 11, I-20133 Milan, Italy
[3] Polytech Univ Turin, Dept Informat, Corso Castelfidardo 39, I-10129 Turin, Italy
[4] Osped Policlin San Martino, Div Neurosurg, IRCCS Oncol & Neurosci, Largo Rosanna Benzi 10, I-16132 Genoa, Italy
[5] Univ Genoa, Dept Neurosci Rehabil Ophthalmol Genet Maternal &, Largo Rosanna Benzi 10, I-16132 Genoa, Italy
关键词
artificial intelligence; deep learning; magnetic resonance imaging; glioblastoma; segmentation; molecular data; clinical applicability; TEMOZOLOMIDE; RADIOMICS; RESECTION; SURVIVAL; IMAGES;
D O I
10.3390/biomedicines12081878
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deep learning (DL) has been applied to glioblastoma (GBM) magnetic resonance imaging (MRI) assessment for tumor segmentation and inference of molecular, diagnostic, and prognostic information. We comprehensively overviewed the currently available DL applications, critically examining the limitations that hinder their broader adoption in clinical practice and molecular research. Technical limitations to the routine application of DL include the qualitative heterogeneity of MRI, related to different machinery and protocols, and the absence of informative sequences, possibly compensated by artificial image synthesis. Moreover, taking advantage from the available benchmarks of MRI, algorithms should be trained on large amounts of data. Additionally, the segmentation of postoperative imaging should be further addressed to limit the inaccuracies previously observed for this task. Indeed, molecular information has been promisingly integrated in the most recent DL tools, providing useful prognostic and therapeutic information. Finally, ethical concerns should be carefully addressed and standardized to allow for data protection. DL has provided reliable results for GBM assessment concerning MRI analysis and segmentation, but the routine clinical application is still limited. The current limitations could be prospectively addressed, giving particular attention to data collection, introducing new technical advancements, and carefully regulating ethical issues.
引用
收藏
页数:17
相关论文
共 103 条
[1]   Clinical implementation of artificial intelligence in neuroradiology with development of a novel workflow-efficient picture archiving and communication system-based automated brain tumor segmentation and radiomic feature extraction [J].
Aboian, Mariam ;
Bousabarah, Khaled ;
Kazarian, Eve ;
Zeevi, Tal ;
Holler, Wolfgang ;
Merkaj, Sara ;
Cassinelli Petersen, Gabriel ;
Bahar, Ryan ;
Subramanian, Harry ;
Sunku, Pranay ;
Schrickel, Elizabeth ;
Bhawnani, Jitendra ;
Zawalich, Mathew ;
Mahajan, Amit ;
Malhotra, Ajay ;
Payabvash, Sam ;
Tocino, Irena ;
Lin, MingDe ;
Westerhoff, Malte .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[2]  
Adewole M, 2023, Arxiv, DOI [arXiv:2305.19369, 10.48550/arXiv.2305.19369]
[3]   Unsupervised Medical Image Segmentation Based on the Local Center of Mass [J].
Aganj, Iman ;
Harisinghani, Mukesh G. ;
Weissleder, Ralph ;
Fischl, Bruce .
SCIENTIFIC REPORTS, 2018, 8
[4]   CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation [J].
Al-masni, Mohammed A. ;
Kim, Dong-Hyun .
SCIENTIFIC REPORTS, 2021, 11 (01)
[5]   A framework for advancing sustainable magnetic resonance imaging access in Africa [J].
Anazodo, Udunna C. ;
Ng, Jinggang J. ;
Ehiogu, Boaz ;
Obungoloch, Johnes ;
Fatade, Abiodun ;
Mutsaerts, Henk J. M. M. ;
Secca, Mario Forjaz ;
Diop, Mamadou ;
Opadele, Abayomi ;
Alexander, Daniel C. ;
Dada, Michael O. ;
Ogbole, Godwin ;
Nunes, Rita ;
Figueiredo, Patricia ;
Figini, Matteo ;
Aribisala, Benjamin ;
Awojoyogbe, Bamidele O. ;
Aduluwa, Harrison ;
Sprenger, Christian ;
Wagner, Rachel ;
Olakunle, Alausa ;
Romeo, Dominic ;
Sun, Yusha ;
Fezeu, Francis ;
Orunmuyi, Akintunde T. ;
Geethanath, Sairam ;
Gulani, Vikas ;
Nganga, Edward Chege ;
Adeleke, Sola ;
Ntobeuko, Ntusi ;
Minja, Frank J. ;
Webb, Andrew G. ;
Asllani, Iris ;
Dako, Farouk .
NMR IN BIOMEDICINE, 2023, 36 (03)
[6]  
Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, DOI 10.48550/ARXIV.1811.02629]
[7]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[8]   Improving the quality of reporting of randomized controlled trials - The CONSORT statement [J].
Begg, C ;
Cho, M ;
Eastwood, S ;
Horton, R ;
Moher, D ;
Olkin, I ;
Pitkin, R ;
Rennie, D ;
Schulz, KF ;
Simel, D ;
Stroup, DF .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1996, 276 (08) :637-639
[9]   IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection [J].
Beiko, Jason ;
Suki, Dima ;
Hess, Kenneth R. ;
Fox, Benjamin D. ;
Cheung, Vincent ;
Cabral, Matthew ;
Shonka, Nicole ;
Gilbert, Mark R. ;
Sawaya, Raymond ;
Prabhu, Sujit S. ;
Weinberg, Jeffrey ;
Lang, Frederick F. ;
Aldape, Kenneth D. ;
Sulman, Erik P. ;
Rao, Ganesh ;
McCutcheon, Ian E. ;
Cahill, Daniel P. .
NEURO-ONCOLOGY, 2014, 16 (01) :81-91
[10]   Brain Tumor Segmentation Based on 3D Residual U-Net [J].
Bhalerao, Megh ;
Thakur, Siddhesh .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 :218-225