Dual-Acceptor Engineering in Pyrene-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution

被引:16
|
作者
Liu, Nengyi [1 ,2 ]
Xie, Shuailei [3 ]
Huang, Yuxing [1 ,2 ]
Lu, Jiaping [1 ,2 ]
Shi, Hongjie [1 ,2 ]
Xu, Shumeng [1 ,2 ]
Zhang, Guigang [1 ,2 ]
Chen, Xiong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Coll Chem, Key Lab Mol Synth & Funct Discovery, Fuzhou 350116, Peoples R China
[3] Natl Univ Singapore, Fac Sci, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; donor-acceptor COFs; H-2; evolution; photocatalysis; WATER; SEMICONDUCTOR; DESIGN;
D O I
10.1002/aenm.202402395
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The integration of electron donor (D) and acceptor (A) units into covalent organic frameworks (COFs) has received increasing interest due to its potential for efficient photocatalytic hydrogen (H2) evolution from water. Nevertheless, the advancement of D-A COFs is still constrained by the limited investigations on acceptor engineering, which enables the highly effective charge transfer pathways in COFs to deliver photoexcited electrons in a preferential orientation to enhance photocatalytic performance. Herein, two systems with D-A and D-A-A configurations based on the acceptor molecular engineering strategy are proposed to construct three distinct COFs. Specifically, TAPPy-DBTDP-COF merging one pyrene-based donor and two benzothiadiazole acceptors realized an average H2 evolution rate of 12.7 mmol h-1 g-1 under visible light, among the highest ever reported for typical D-A-type COF systems. The combination of experimental and theoretical analysis signifies the crucial role of the dual-acceptor arrangement in promoting exciton dissociation and carrier migration. These findings underscore the significant potential of D-A-A structural design, which is conducive to the efficient separation of photoexcited electrons and holes resulting in superior photocatalytic activities.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution
    Zhong, Yuelin
    Dong, Wenbo
    Ren, Shijie
    Li, Longyu
    ADVANCED MATERIALS, 2024, 36 (01)
  • [12] Amide Linkages in Pyrene-Based Covalent Organic Frameworks toward Efficient Photocatalytic Reduction of Uranyl
    Kang, Jinyang
    Hang, Jiahui
    Chen, Bo
    Chen, Lang
    Zhao, Pengwei
    Xu, Yuwei
    Luo, Yu
    Xia, Chuanqin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (51) : 57225 - 57234
  • [13] Study of pyrene-based covalent organic frameworks for efficient photocatalytic oxidation of low-concentration NO
    Xiao, Zhiyu
    Ren, Yong
    Chen, George Zheng
    Sun, Yong
    Wang, Chengjun
    He, Jun
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [14] Regulating local polarization in truxenone-based covalent organic frameworks for boosting photocatalytic hydrogen evolution
    Hao, Lei
    Shen, Rongchen
    Qin, Chaochao
    Li, Neng
    Hu, Haobin
    Liang, Guijie
    Li, Xin
    SCIENCE CHINA-MATERIALS, 2024, 67 (02) : 504 - 513
  • [15] Molecular Engineering of Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution from Water
    Su, Jie
    Li, Ping
    Duan, Feng
    Chen, Yuxiang
    Zhou, Yida
    Shen, Mao
    Zhang, Li
    Ren, Shi-Bin
    Chen, Mengyang
    CHEMISTRY-A EUROPEAN JOURNAL, 2025, 31 (06)
  • [16] Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Evolution
    Katsamitros, Andreas
    Giannakakis, Antonios N.
    Karamoschos, Nikolaos
    Karousis, Nikolaos
    Tasis, Dimitrios
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [17] Computation-Guided Regulation of Thiophene-Based Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution†
    Luo, Xiao
    Chen, Yuxiang
    Lin, Jia-Tong
    Luo, Jie
    Xia, Ri-Qin
    Yin, Na
    Lin, Yang-Min
    Duan, Haiyan
    Ren, Shi-Bin
    Gao, Qiang
    Ning, Guo-Hong
    Li, Dan
    CHINESE JOURNAL OF CHEMISTRY, 2025,
  • [18] Donor-Acceptor Pyrene-Based Covalent Organic Framework for Blue Light Photocatalytic Oxidative Coupling of Amines
    Wang, Linyang
    Chakraborty, Jeet
    Deng, Maojun
    Sun, Jiamin
    van der Voort, Pascal
    CHEMCATCHEM, 2024, 16 (16)
  • [19] II-Scheme Heterojunction Frameworks Based on Covalent Organic Frameworks and HKUST-1 for Boosting Photocatalytic Hydrogen Evolution
    Ma, Tiantian
    Liu, Zhijie
    Deng, Jiaqi
    Han, Enshan
    Liang, Jun
    Wang, Ruihu
    CHEMSUSCHEM, 2024, 17 (22)
  • [20] Fully Conjugated Benzobisoxazole-Bridged Covalent Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution
    Ma, Si
    Li, Zhongping
    Hou, Yuxin
    Li, Jiali
    Zhang, Zhenwei
    Deng, Tianqi
    Wu, Gang
    Wang, Rui
    Yang, Shuo-wang
    Liu, Xiaoming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,