Existence of solutions for the fractional Nirenberg problem with indefinite curvature functions

被引:1
作者
An, Jiaxing [1 ]
Dou, Jingbo [1 ]
Hu, Yunyun [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Nirenberg problem; conformal invariant operator; variational structure; mountain pass lemma; blowing-up analysis method; PRESCRIBING SCALAR CURVATURE; S-N; CONFORMAL DEFORMATION; SHARP INEQUALITIES; GAUSSIAN CURVATURE; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; YAMABE PROBLEM; SOBOLEV; METRICS;
D O I
10.1142/S1664360724500085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the following fractional Nirenberg problem: P-sigma(gSn)(u) = c(n,sigma)R-sigma((g) over bar)(x)u(n+2 sigma/n-2 sigma) on S-n, where P-sigma(gSn) is fractional order conformal invariant operator and R-sigma((g) over bar)(x) is the sigma-curvature for (S-n,(g) over bar) with (g) over bar = u(4/n-2 sigma)gS(n) with n >= 2 and sigma is an element of (0, 1). We show the existence results to the above equation employing the variational method and blowing-up analysis method, when the rotationally symmetric and indefinite curvature function R satisfies certain flatness conditions.
引用
收藏
页数:36
相关论文
共 83 条
[41]   BLOW UP LIMITS OF THE FRACTIONAL LAPLACIAN AND THEIR APPLICATIONS TO THE FRACTIONAL NIRENBERG PROBLEM [J].
Du, Xusheng ;
Jin, Tianling ;
Xiong, Jingang ;
Yang, Hui .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (11) :4693-4701
[42]   Conformal metrics on the ball with zero scalar curvature and prescribed mean curvature on the boundary [J].
Escobar, JF ;
Garcia, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (01) :71-152
[43]   A prescribed scalar curvature-type equation: almost critical manifolds and multiple solutions [J].
Esposito, P ;
Mancini, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 205 (02) :306-356
[44]  
Fefferman C., 1985, Elie Cartan et les Mathematiques d'aujourd'hui, P95
[45]   CONFORMALLY INVARIANT POWERS OF THE LAPLACIAN .1. EXISTENCE [J].
GRAHAM, CR ;
JENNE, R ;
MASON, LJ ;
SPARLING, GAJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 46 :557-565
[46]   Scattering matrix in conformal geometry [J].
Graham, CR ;
Zworski, M .
INVENTIONES MATHEMATICAE, 2003, 152 (01) :89-118
[47]   The Yamabe problem on manifolds with boundary: Existence and compactness results [J].
Han, ZC ;
Li, YY .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :489-542
[48]   A note on the Kazdan-Warner type condition [J].
Han, ZC ;
Li, YY .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :283-292
[49]   PRESCRIBING GAUSSIAN CURVATURE ON S2 [J].
HAN, ZC .
DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) :679-703
[50]   ON THE LOCAL SOLVABILITY OF THE NIRENBERG PROBLEM ON S2 [J].
Han, Zheng-Chao ;
Li, YanYan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) :607-615