Existence of solutions for the fractional Nirenberg problem with indefinite curvature functions

被引:0
作者
An, Jiaxing [1 ]
Dou, Jingbo [1 ]
Hu, Yunyun [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Nirenberg problem; conformal invariant operator; variational structure; mountain pass lemma; blowing-up analysis method; PRESCRIBING SCALAR CURVATURE; S-N; CONFORMAL DEFORMATION; SHARP INEQUALITIES; GAUSSIAN CURVATURE; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; YAMABE PROBLEM; SOBOLEV; METRICS;
D O I
10.1142/S1664360724500085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the following fractional Nirenberg problem: P-sigma(gSn)(u) = c(n,sigma)R-sigma((g) over bar)(x)u(n+2 sigma/n-2 sigma) on S-n, where P-sigma(gSn) is fractional order conformal invariant operator and R-sigma((g) over bar)(x) is the sigma-curvature for (S-n,(g) over bar) with (g) over bar = u(4/n-2 sigma)gS(n) with n >= 2 and sigma is an element of (0, 1). We show the existence results to the above equation employing the variational method and blowing-up analysis method, when the rotationally symmetric and indefinite curvature function R satisfies certain flatness conditions.
引用
收藏
页数:36
相关论文
共 83 条
[1]   Methods of algebraic topology for the prescribed scalar curvature problem [J].
Aubin, T ;
Bahri, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :525-549
[2]  
AUBIN T, 1991, B SCI MATH, V115, P125
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]   Topological hypothesis for the prescribed scalar curvature problem [J].
Aubin, T ;
Bahri, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :843-850
[5]   ON THE PRESCRIBED SCALAR CURVATURE ON 3-HALF SPHERES: MULTIPLICITY RESULTS AND MORSE INEQUALITIES AT INFINITY [J].
Ayed, Mohamed Ben ;
Ahmedou, Mohameden Ould .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :655-683
[6]   Harnack inequalities for Yamabe type equations [J].
Bahoura, Samy Skander .
BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (08) :875-892
[7]   ON A VARIATIONAL PROBLEM WITH LACK OF COMPACTNESS - THE TOPOLOGICAL EFFECT OF THE CRITICAL-POINTS AT INFINITY [J].
BAHRI, A ;
LI, YY ;
REY, O .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (01) :67-93
[8]   THE SCALAR-CURVATURE PROBLEM ON THE STANDARD 3-DIMENSIONAL SPHERE [J].
BAHRI, A ;
CORON, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :106-172
[9]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[10]  
BESSE A. L., 1987, Einstein Manifolds, DOI DOI 10.1007/978-3-540-74311-8