Optimized generalized monogamy relations and upper bounds for N-qubit systems

被引:1
作者
Shen, Zhong-Xi [1 ]
Xuan, Dong-Ping [1 ]
Zhou, Wen [1 ]
Wang, Zhi-Xi [1 ]
Fei, Shao-Ming [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
monogamy; concurrence; negativity; ENTANGLEMENT; STATE;
D O I
10.1088/1612-202X/ad771c
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present optimized generalized monogamy relations and upper bounds derived from concurrence and concurrence of assistance. We first establish a tighter general upper bound of the ath (0 <= alpha <= 2) power of concurrence for N-qubit states. Then for N-qubit systems ABC(1)... CN-2, the optimized monogamy relations and upper bounds satisfied by the ath (0 <= alpha <= 2) power of concurrence of N-qubit pure states under the partition AB and C-1... CN-2, as well as under the partition ABC(1) and C-2... CN-2 are established, which give rise to restrictions on the entanglement distribution and trade offs among the subsystems. Moreover, the utilization of the W-class states demonstrates that our results are tighter compared with the existing results. Similar results are also obtained for negativity.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Generalized Schmidt decomposition and classification of three-quantum-bit states [J].
Acín, A ;
Andrianov, A ;
Costa, L ;
Jané, E ;
Latorre, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 2000, 85 (07) :1560-1563
[2]   A note on invariants and entanglements [J].
Albeverio, S ;
Fei, SM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2001, 3 (04) :223-227
[3]   General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems [J].
Bai, Yan-Kui ;
Xu, Yuan-Fei ;
Wang, Z. D. .
PHYSICAL REVIEW LETTERS, 2014, 113 (10)
[4]   Exploring multipartite quantum correlations with the square of quantum discord [J].
Bai, Yan-Kui ;
Zhang, Na ;
Ye, Ming-Yong ;
Wang, Z. D. .
PHYSICAL REVIEW A, 2013, 88 (01)
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Semiquantum key distribution [J].
Boyer, Michel ;
Gelles, Ran ;
Kenigsberg, Dan ;
Mor, Tal .
PHYSICAL REVIEW A, 2009, 79 (03)
[7]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[8]   Quantum hyperentanglement and its applications in quantum information processing [J].
Deng, Fu-Guo ;
Ren, Bao-Cang ;
Li, Xi-Han .
SCIENCE BULLETIN, 2017, 62 (01) :46-68
[9]  
Dr W., 2000, Phys. Rev. A, V61, DOI [10.1103/PhysRevA.61.062313, DOI 10.1103/PHYSREVA.61.062313]
[10]   Partial transposition as a direct link between concurrence and negativity [J].
Eltschka, Christopher ;
Toth, Geza ;
Siewert, Jens .
PHYSICAL REVIEW A, 2015, 91 (03)