Geometric Features of the Hurwitz-Lerch Zeta Type Function Based on Differential Subordination Method

被引:1
作者
Abdulnabi, Faten F. [1 ,2 ]
Al-Janaby, Hiba F. [1 ]
Ghanim, Firas [3 ]
Lupas, Alina Alb [4 ]
机构
[1] Univ Baghdad, Coll Sci, Dept Math, Baghdad 10071, Iraq
[2] Minist Educ, Al Rusafa 2, Baghdad 10082, Iraq
[3] Univ Sharjah, Coll Sci, Dept Math, Sharjah 27272, U Arab Emirates
[4] Univ Oradea, Dept Math & Comp Sci, 1 Univ St, Oradea 410087, Romania
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
holomorphic function; Hurwitz-Lerch zeta function; univalent function; convolution product; differential subordination;
D O I
10.3390/sym16070784
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interest in special complex functions and their wide-ranging implementations in geometric function theory (GFT) has developed tremendously. Recently, subordination theory has been instrumentally employed for special functions to explore their geometric properties. In this effort, by using a convolutional structure, we combine the geometric series, logarithm, and Hurwitz-Lerch zeta functions to formulate a new special function, namely, the logarithm-Hurwitz-Lerch zeta function (LHL-Z function). This investigation then contributes to the study of the LHL-Z function in terms of the geometric theory of holomorphic functions, based on the differential subordination methodology, to discuss and determine the univalence and convexity conditions of the LHL-Z function. Moreover, there are other subordination and superordination connections that may be visually represented using geometric methods. Functions often exhibit symmetry when subjected to conformal mappings. The investigation of the symmetries of these mappings may provide a clearer understanding of how subordination and superordination with the Hurwitz-Lerch zeta function behave under different transformations.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator [J].
Abdulnabi, Faten Fakher ;
Al-Janaby, Hiba F. ;
Ghanim, Firas ;
Lupas, Alina Alb .
MATHEMATICS, 2023, 11 (18)
[2]   On The Third-Order Complex Differential Inequalities of ξ-Generalized-Hurwitz-Lerch Zeta Functions [J].
Al-Janaby, Hiba ;
Ghanim, Firas ;
Darus, Maslina .
MATHEMATICS, 2020, 8 (05)
[3]   Differential inequalities related to Salagean type integral operator involving extended generalized Mittag-Leffler function [J].
Al-Janaby, Hiba Fawzi ;
Ahmad, Muhammad Zaini .
3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS, 2018, 1132
[4]   Differential Subordination and Superordination Results Associated with Mittag-Leffler Function [J].
Attiya, Adel A. ;
Aouf, Mohamed K. ;
Ali, Ekram E. ;
Yassen, Mansour F. .
MATHEMATICS, 2021, 9 (03) :1-11
[5]  
Breaz D, 2010, STUD U BABES-BOL MAT, V55, P69
[6]   An Extension of the Generalized Hurwitz-Lerch Zeta Function of Two Variables [J].
Choi, Junesang ;
Parmar, Rakesh K. .
FILOMAT, 2017, 31 (01) :91-96
[7]  
de la Vallee-Poussin C.J., 1896, Recherches Analytiques sur la Thorie des Nombres Premiers
[8]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[9]  
Erdelyi A., 1954, Bull. Amer. Math. Soc, V60, P405
[10]   Asymptotic expansions of the Hurwitz-Lerch zeta function [J].
Ferreira, C ;
López, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) :210-224