AN RKHS APPROACH FOR PIVOTAL INFERENCE IN FUNCTIONAL LINEAR REGRESSION

被引:0
|
作者
Dette, Holger [1 ]
Tang, Jiajun [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Bochum 44801, Germany
关键词
Functional linear regression; functional time series; m-; approximability; relevant hypotheses; reproducing kernel Hilbert space; self-; normalization; EQUIVALENCE; MINIMAX; MODELS; SPACE;
D O I
10.5705/ss.202022.0086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use a reproducing kernel Hilbert space approach to develop a methodology for testing hypotheses about the slope function in a functional linear regression for time series. In contrast to most existing studies, which tests for the exact nullity of the slope function, we are interested in the null hypothesis that the slope function vanishes only approximately, where deviations are measured with respect to the L 2-norm. We propose an asymptotically pivotal test that does not require estimating nuisance parameters or long-run covariances. The key technical tools that we use to prove the validity of our approach include a uniform Bahadur representation and a weak invariance principle for a sequential process of estimates of the slope function. Lastly, we demonstrate the potential of our methods using a small simulation study and a data example.
引用
收藏
页码:1521 / 1543
页数:23
相关论文
共 50 条
  • [1] AN RKHS APPROACH TO ROBUST FUNCTIONAL LINEAR REGRESSION
    Shin, Hyejin
    Lee, Seokho
    STATISTICA SINICA, 2016, 26 (01) : 255 - 272
  • [2] An RKHS model for variable selection in functional linear regression
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 : 25 - 45
  • [3] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [4] INFERENCE FOR GENERALIZED PARTIAL FUNCTIONAL LINEAR REGRESSION
    Li, Ting
    Zhu, Zhongyi
    STATISTICA SINICA, 2020, 30 (03) : 1379 - 1397
  • [5] Estimation and Inference for Nonparametric Expected Shortfall Regression over RKHS
    Yu, Myeonghun
    Wang, Yue
    Xie, Siyu
    Tan, Kean Ming
    Zhou, Wen-Xin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2025,
  • [6] Statistical inference for the slope parameter in functional linear regression
    Kutta, Tim
    Dierickx, Gauthier
    Dette, Holger
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5980 - 6042
  • [7] Estimation and inference in partially functional linear regression with multiple functional covariates
    Xu, Wenchao
    Ding, Hui
    Zhang, Riquan
    Liang, Hua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 209 : 44 - 61
  • [8] Spatial Linear Regression with Covariate Measurement Errors: Inference and Scalable Computation in a Functional Modeling Approach
    Cao, Jiahao
    He, Shiyuan
    Zhang, Bohai
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1588 - 1599
  • [9] Estimation and inference for functional linear regression models with partially varying regression coefficients
    Cao, Guanqun
    Wang, Shuoyang
    Wang, Lily
    STAT, 2020, 9 (01):
  • [10] Statistical inference in the partial functional linear expectile regression model
    Juxia Xiao
    Ping Yu
    Xinyuan Song
    Zhongzhan Zhang
    ScienceChina(Mathematics), 2022, 65 (12) : 2601 - 2630