Real-Time Automatic M-Mode Echocardiography Measurement With Panel Attention

被引:1
作者
Tseng, Ching-Hsun [1 ]
Chien, Shao-Ju [2 ,3 ,4 ]
Wang, Po-Shen [5 ]
Lee, Shin-Jye [4 ]
Pu, Bin [6 ]
Zeng, Xiao-Jun [1 ]
机构
[1] Univ Manchester, Dept Comp Sci, Manchester M13 9PR, England
[2] Kaohsiung Chang Gung Mem Hosp, Dept Pediat, Div Pediat Cardiol, Kaohsiung 83301, Taiwan
[3] Chang Gung Univ, Coll Med, Sch Tradit Chinese Med, Taoyuan 33302, Taiwan
[4] Cheng Shiu Univ, Dept Early Childhood Care & Educ, Kaohsiung 83347, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Inst Management Technol, Hinschu 30010, Taiwan
[6] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
关键词
Real-time systems; Echocardiography; Instance segmentation; Biomedical measurement; Labeling; Deep learning; Manuals; M-mode echocardiography; ultrasound images; real-time instance segmentation; SEGMENTATION;
D O I
10.1109/JBHI.2024.3413628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motion mode (M-mode) echocardiography is essential for measuring cardiac dimension and ejection fraction. However, the current diagnosis is time-consuming and suffers from diagnosis accuracy variance. This work resorts to building an automatic scheme through well-designed and well-trained deep learning to conquer the situation. That is, we proposed RAMEM, an automatic scheme of real-time M-mode echocardiography, which contributes three aspects to address the challenges: 1) provide MEIS, the first dataset of M-mode echocardiograms, to enable consistent results and support developing an automatic scheme; For detecting objects accurately in echocardiograms, it requires big receptive field for covering long-range diastole to systole cycle. However, the limited receptive field in the typical backbone of convolutional neural networks (CNN) and the losing information risk in non-local block (NL) equipped CNN risk the accuracy requirement. Therefore, we 2) propose panel attention embedding with updated UPANets V2, a convolutional backbone network, in a real-time instance segmentation (RIS) scheme for boosting big object detection performance; 3) introduce AMEM, an efficient algorithm of automatic M-mode echocardiography measurement, for automatic diagnosis; The experimental results show that RAMEM surpasses existing RIS schemes (CNNs with NL & Transformers as the backbone) in PASCAL 2012 SBD and human performances in MEIS.
引用
收藏
页码:5383 / 5395
页数:13
相关论文
共 50 条
[11]   Fully automated mouse echocardiography analysis using deep convolutional neural networks [J].
Duan, Chong ;
Montgomery, Mary Kate ;
Chen, Xian ;
Ullas, Soumya ;
Stansfield, John ;
McElhanon, Kevin ;
Hirenallur-Shanthappa, Dinesh .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2022, 323 (04) :H628-H639
[12]   Segmentation of Arterial Vessel Wall Motion to Sub-Pixel Resolution using M-mode Ultrasound [J].
Fancourt, Craig ;
Azer, Karim ;
Ramcharan, Sharmilee L. ;
Bunzel, Michelle ;
Cambell, Barry R. ;
Sachs, Jeffrey R. ;
Walker, Matthew, III .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :3138-3141
[13]  
Ge Z, 2021, Arxiv, DOI arXiv:2107.08430
[14]  
Geng ZY, 2021, Arxiv, DOI arXiv:2109.04553
[15]   Deep learning interpretation of echocardiograms [J].
Ghorbani, Amirata ;
Ouyang, David ;
Abid, Abubakar ;
He, Bryan ;
Chen, Jonathan H. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[16]   Learning With Context Feedback Loop for Robust Medical Image Segmentation [J].
Girum, Kibrom Berihu ;
Crehange, Gilles ;
Lalande, Alain .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (06) :1542-1554
[17]   Visual attention network [J].
Guo, Meng-Hao ;
Lu, Cheng-Ze ;
Liu, Zheng-Ning ;
Cheng, Ming-Ming ;
Hu, Shi-Min .
COMPUTATIONAL VISUAL MEDIA, 2023, 9 (04) :733-752
[18]   Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks [J].
Guo, Meng-Hao ;
Liu, Zheng-Ning ;
Mu, Tai-Jiang ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) :5436-5447
[19]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[20]   Local Relation Networks for Image Recognition [J].
Hu, Han ;
Zhang, Zheng ;
Xie, Zhenda ;
Lin, Stephen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3463-3472