Patterns of rogue waves in the sharp-line Maxwell-Bloch system

被引:1
作者
Duan, Zhengyan [1 ]
Tao, Xiuyu [1 ]
Yang, Bo [1 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Rogue waves; Pattern formation; Asymptotics; Maxwell-Bloch system; PULSE-PROPAGATION; EQUATION; ORDER; POLYNOMIALS; INSTABILITY; HIERARCHY; VORTICES; WATER; 2ND;
D O I
10.1016/j.chaos.2024.115407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Maxwell-Bloch system describes light-matter interactions in a semi-infinitely long one dimensional two- level optical medium. Rogue wave patterns in the Maxwell-Bloch system under sharp-line limit are analytically studied. It is shown that when single internal parameter in bilinear expressions of rogue waves gets large, these waves would exhibit clear geometric patterns, which comprise fundamental (Peregrine) rogue waves arranged in shapes such as triangle, pentagon, heptagon and nonagon structures, with a possible lower-order rogue wave at the center. These rogue wave patterns are analytically determined from the root structure of the Yablonskii- Vorob'ev polynomial hierarchy through dilation, rotation, stretch and shear. It is also shown that when multiple internal parameters in the rogue wave solutions get large, new rogue wave patterns would arise, including heart-shaped structures, fan-shaped structures, and many others. Analytically, these patterns are determined by the root structure of the Adler-Moser polynomials through a linear transformation. Comparison between analytical predictions of these rogue patterns and true solutions shows excellent agreement.
引用
收藏
页数:13
相关论文
共 87 条
[41]   High-Order Solutions and Generalized Darboux Transformations of Derivative Nonlinear Schrodinger Equations [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
STUDIES IN APPLIED MATHEMATICS, 2013, 130 (04) :317-344
[42]   Revisit of rogue wave solutions in the Yajima-Oikawa system [J].
He, Aolin ;
Huang, Peng ;
Zhang, Guangxiong ;
Huang, Jiaxing .
NONLINEAR DYNAMICS, 2023, 111 (10) :9439-9455
[43]   Generating mechanism for higher-order rogue waves [J].
He, J. S. ;
Zhang, H. R. ;
Wang, L. H. ;
Porsezian, K. ;
Fokas, A. S. .
PHYSICAL REVIEW E, 2013, 87 (05)
[44]  
Hirota R., 2004, Direct methods in soliton theory
[45]   Determinant structure of the rational solutions for the Painleve II equation [J].
Kajiwara, K ;
Ohta, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) :4693-4704
[46]   EXACT SOLUTION FOR A DERIVATIVE NON-LINEAR SCHRODINGER EQUATION [J].
KAUP, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (04) :798-801
[47]   Classifying the hierarchy of nonlinear-Schrodinger-equation rogue-wave solutions [J].
Kedziora, David J. ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2013, 88 (01)
[48]   Circular rogue wave clusters [J].
Kedziora, David J. ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2011, 84 (05)
[49]  
Kharif C, 2009, ADV GEOPHYS ENV MECH, P1, DOI 10.1007/978-3-540-88419-4_1
[50]   The Peregrine soliton in nonlinear fibre optics [J].
Kibler, B. ;
Fatome, J. ;
Finot, C. ;
Millot, G. ;
Dias, F. ;
Genty, G. ;
Akhmediev, N. ;
Dudley, J. M. .
NATURE PHYSICS, 2010, 6 (10) :790-795