LEAST SQUARES APPROXIMATIONS IN LINEAR STATISTICALINVERSE LEARNING PROBLEMS

被引:0
作者
Helin, Tapio [1 ]
机构
[1] LUT Univ, Sch Engn Sci, POB 20, FI-53851 Lappeenranta, Finland
关键词
inverse problems; least squares approximations; statistical learning; minimax; DISCRETIZATION LEVEL CHOICE; INVERSE PROBLEMS; TIKHONOV REGULARIZATION; CONVERGENCE ANALYSIS; SELF-REGULARIZATION; PROJECTION METHODS; RATES; ALGORITHMS; EQUATIONS;
D O I
10.1137/22M1538600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Statistical inverse learning aims at recovering an unknown function f from randomly scattered and possibly noisy point evaluations of another function g, connected to f via an illposed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cutoff operation. Moreover, we prove that the obtained rates are minimax optimal.
引用
收藏
页码:2025 / 2047
页数:23
相关论文
共 50 条
  • [21] Least Squares Learning Identification
    Sun Mingxuan
    Bi Hongbo
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1615 - 1620
  • [22] ROBUST LINEAR LEAST SQUARES REGRESSION
    Audibert, Jean-Yves
    Catoni, Olivier
    ANNALS OF STATISTICS, 2011, 39 (05) : 2766 - 2794
  • [23] GMRES methods for least squares problems
    Hayami, Ken
    Yin, Jun-Feng
    Ito, Tokushi
    NII Technical Reports, 2007, 2007 (09): : 1 - 28
  • [24] REGULARIZED LEAST SQUARES APPROXIMATIONS ON THE SPHERE USING SPHERICAL DESIGNS
    An, Congpei
    Chen, Xiaojun
    Sloan, Ian H.
    Womersley, Robert S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1513 - 1534
  • [25] Discrete least-squares radial basis functions approximations
    Li, Siqing
    Ling, Leevan
    Cheung, Ka Chun
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 542 - 552
  • [26] SPARSE STRETCHING FOR SOLVING SPARSE-DENSE LINEAR LEAST-SQUARES PROBLEMS
    Scott, Jennifer A.
    Tuma, Miroslav
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03) : A1604 - A1625
  • [27] GOAL-ORIENTED OPTIMAL APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Cui, Tiangang
    Willcox, Karen
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05) : S167 - S196
  • [28] OPTIMAL LOW-RANK APPROXIMATIONS OF BAYESIAN LINEAR INVERSE PROBLEMS
    Spantini, Alessio
    Solonen, Antti
    Cui, Tiangang
    Martin, James
    Tenorio, Luis
    Marzouk, Youssef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) : A2451 - A2487
  • [30] Randomized algorithms for total least squares problems
    Xie, Pengpeng
    Xiang, Hua
    Wei, Yimin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (01)