A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells

被引:13
作者
Xu, Junyi [1 ]
Heumueller, Thomas [1 ,2 ]
Le Corre, Vincent M. [1 ,2 ]
Barabash, Anastasiia [1 ]
Felix, Roberto [3 ]
Frisch, Johannes [3 ]
Baer, Marcus [3 ,4 ,5 ,6 ]
Brabec, Christoph J. [1 ,2 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Mat Elect & Energy Technol i MEET, Dept Mat Sci & Engn, Martensstr 7, D-91058 Erlangen, Germany
[2] Helmholtz Inst Erlangen Nurnberg Renewable Energy, Immerwahrstr 2, D-91058 Erlangen, Germany
[3] Helmholtz Zentrum Berlin Mat & Energie GmbH, Dept Interface Design, Albert Einstein Str 15, D-12489 Berlin, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie GmbH, Energy Mat Insitu Lab Berlin EMIL, Albert Einstein Str 15, D-12489 Berlin, Germany
[5] Helmholtz Inst Erlangen Nurnberg Renewable Energy, Albert Einstein Str 15, D-12489 Berlin, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Chem & Pharm, Egerlandstr 3, D-91058 Erlangen, Germany
基金
欧盟地平线“2020”;
关键词
hole transport layer; nanoparticles; organic solar cell; solution-processed;
D O I
10.1016/j.joule.2024.06.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solution-processed organic photovoltaic (OPV) cells allow cost- and energy-effective fabrication methods for large-area devices. Despite significant progress on laboratory-scale devices, there is still a lack of interface materials that can be solution processed on top of the active layer, are compatible with novel non-fullerene acceptors (NFAs), and also provide sufficient long-term stability. We developed a novel interface layer concept, where alcohol-based organic polymer nanoparticles can be processed on top of a polymer-NFA active layer and doped to achieve a quasi-Ohmic hole contact. Moreover, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is processed as a second layer, forming a bilayer solution-processed hole transporting layer (HTL), providing an industrially relevant inverted architecture with a protective PEDOT:PSS layer on top. Most importantly, exceptional stability is observed. PM6:Y6 devices with the bilayer HTL are demonstrated to maintain 93% of their initial efficiency for 1,800 h under continuous solar cell operation at 60 degrees C.
引用
收藏
页码:2570 / 2584
页数:16
相关论文
共 42 条
[1]  
Bubnova O, 2014, NAT MATER, V13, P190, DOI [10.1038/nmat3824, 10.1038/NMAT3824]
[2]   An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor [J].
Cha, Hyojung ;
Wu, Jiaying ;
Wadsworth, Andrew ;
Nagitta, Jade ;
Limbu, Saurav ;
Pont, Sebastian ;
Li, Zhe ;
Searle, Justin ;
Wyatt, Mark F. ;
Baran, Derya ;
Kim, Ji-Seon ;
McCulloch, Iain ;
Durrant, James R. .
ADVANCED MATERIALS, 2017, 29 (33)
[3]   A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents [J].
Chen, Haiyang ;
Zhang, Rui ;
Chen, Xiaobin ;
Zeng, Guang ;
Kobera, Libor ;
Abbrent, Sabina ;
Zhang, Ben ;
Chen, Weijie ;
Xu, Guiying ;
Oh, Jiyeon ;
Kang, So-Huei ;
Chen, Shanshan ;
Yang, Changduk ;
Brus, Jiri ;
Hou, Jianhui ;
Gao, Feng ;
Li, Yaowen ;
Li, Yongfang .
NATURE ENERGY, 2021, 6 (11) :1045-1053
[4]   Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications [J].
Chen, Kung-Shih ;
Salinas, Jose-Francisco ;
Yip, Hin-Lap ;
Huo, Lijun ;
Hou, Jianhui ;
Jen, Alex K. -Y. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9551-9557
[5]   Highly Efficient, Mechanically Flexible, Semi-Transparent Organic Solar Cells Doctor Bladed from Non-Halogenated Solvents [J].
Czolk, Jens ;
Landerer, Dominik ;
Koppitz, Manuel ;
Nass, David ;
Colsmann, Alexander .
ADVANCED MATERIALS TECHNOLOGIES, 2016, 1 (09)
[6]   Organic photovoltaic modules with new world record efficiencies [J].
Distler, Andreas ;
Brabec, Christoph J. ;
Egelhaaf, Hans-Joachim .
PROGRESS IN PHOTOVOLTAICS, 2021, 29 (01) :24-31
[7]   Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells [J].
Gasparini, Nicola ;
Paleti, Harish Kumar ;
Bertrandie, Jules ;
Cai, Guilong ;
Zhang, Guichuan ;
Wadsworth, Andrew ;
Lu, Xinhui ;
Yip, Hin-Lap ;
McCulloch, Iain ;
Baran, Derya .
ACS ENERGY LETTERS, 2020, 5 (05) :1371-1379
[8]   Burn-in Free Nonfullerene-Based Organic Solar Cells [J].
Gasparini, Nicola ;
Salvador, Michael ;
Strohm, Sebastian ;
Heumueller, Thomas ;
Levchuk, Ievgen ;
Wadsworth, Andrew ;
Bannock, James H. ;
de Mello, John C. ;
Egelhaaf, Hans-Joachim ;
Baran, Derya ;
McCulloch, Iain ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[9]   A molecular interaction-diffusion framework for predicting organic solar cell stability [J].
Ghasemi, Masoud ;
Balar, Nrup ;
Peng, Zhengxing ;
Hu, Huawei ;
Qin, Yunpeng ;
Kim, Taesoo ;
Rech, Jeromy J. ;
Bidwell, Matthew ;
Mask, Walker ;
McCulloch, Iain ;
You, Wei ;
Amassian, Aram ;
Risko, Chad ;
O'Connor, Brendan T. ;
Ade, Harald .
NATURE MATERIALS, 2021, 20 (04) :525-+
[10]   ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors [J].
Guo, Fei ;
Zhu, Xiangdong ;
Forberich, Karen ;
Krantz, Johannes ;
Stubhan, Tobias ;
Salinas, Michael ;
Halik, Marcus ;
Spallek, Stefanie ;
Butz, Benjamin ;
Spiecker, Erdmann ;
Ameri, Tayebeh ;
Li, Ning ;
Kubis, Peter ;
Guldi, Dirk M. ;
Matt, Gebhard J. ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :1062-1067