Multiplicity of Normalized Solutions to a Fractional Logarithmic Schrodinger Equation

被引:1
作者
Lv, Yan-Cheng [1 ]
Li, Gui-Dong [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
关键词
normalized solution; logarithmic Schrodinger equation; fractional differential equation; variational methods; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.3390/fractalfract8070391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and multiplicity of normalized solutions to the fractional logarithmic Schrodinger equation (-Delta)(s)u + V(epsilon x)u = lambda u + u log u(2) in R-N, under the mass constraint integral(N)(R) |u|(2)dx = a. Here, N >= 2, a, epsilon > 0, lambda is an element of R is an unknown parameter, (-Delta)(s) is the fractional Laplacian and s is an element of (0,1). We introduce a function space where the energy functional associated with the problem is of class C-1. Then, under some assumptions on the potential V and using the Lusternik-Schnirelmann category, we show that the number of normalized solutions depends on the topology of the set for which the potential V reaches its minimum.
引用
收藏
页数:18
相关论文
共 33 条
[1]  
Almgren F. J., 1989, J AM MATH SOC, V2, P683, DOI 10.1090/S0894-0347-1989-1002633-4
[2]  
Alves CO, 2024, J GEOM ANAL, V34, DOI 10.1007/s12220-024-01649-y
[3]   Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik-Schnirelmann category [J].
Alves, Claudianor O. ;
da Silva, Ismael S. .
ANALYSIS AND APPLICATIONS, 2023, 21 (06) :1477-1516
[4]  
Alves CO, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01741-9
[5]   MULTIPLE POSITIVE SOLUTIONS FOR A SCHRODINGER LOGARITHMIC EQUATION [J].
Alves, Claudianor O. ;
Ji, Chao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (05) :2671-2685
[6]   Existence and concentration of positive solutions for a logarithmic Schrodinger equation via penalizationmethod [J].
Alves, Claudianor O. ;
Ji, Chao .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
[7]   Existence and concentration of positive solutions for a Schrodinger logarithmic equation [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06)
[8]   NORMALIZED SOLUTIONS TO THE MIXED DISPERSION NONLINEAR SCHRODINGER EQUATION IN THE MASS CRITICAL AND SUPERCRITICAL REGIME [J].
Bonheure, Denis ;
Casteras, Jean-Baptiste ;
Gou, Tianxiang ;
Jeanjean, Louis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) :2167-2212
[9]   STABLE-SOLUTIONS OF THE LOGARITHMIC SCHRODINGER-EQUATION [J].
CAZENAVE, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (10) :1127-1140
[10]  
CAZENAVE T., 2003, Courant Lect. Notes Math., V10