Sound speed prediction of seafloor sediments in the South Yellow Sea based on BP-AdaBoost model

被引:1
作者
Liang, Yiming [1 ,2 ,3 ]
Zhang, Linqing [1 ,3 ]
Liu, Wenlong [1 ,2 ,3 ]
Meng, Xiangmei [1 ,2 ,3 ]
Kan, Guangming [1 ,2 ,3 ]
Wang, Jingqiang [1 ,2 ,3 ]
Li, Guanbao [1 ,2 ,3 ]
Liu, Baohua [2 ,3 ]
Chen, Mujun [4 ]
机构
[1] Minist Nat Resources, Inst Oceanog 1, Key Lab Marine Geol & Metallogeny, Qingdao 266061, Peoples R China
[2] Laoshan Lab, Lab Marine Geol, Qingdao, Peoples R China
[3] Key Lab Submarine Acoust Invest & Applicat Qingdao, Qingdao, Peoples R China
[4] Ocean Univ China, Coll Marine Geosci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Seafloor sediment sound speed; BP-AdaBoost model; South Yellow Sea; prediction model; dual-parameter prediction equation; PHYSICAL-PROPERTIES; SURFACE SEDIMENTS; VELOCITY; AREA;
D O I
10.1080/1064119X.2024.2402813
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Based on the sound speed and physical property measurements of seafloor sediments obtained in the central part of the South Yellow Sea, a multi-parameter prediction model for the sound speed of seafloor sediments based on seven parameters, including density, porosity, water content, liquid limit, plasticity index, compression coefficient, and median grain size, was developed by using the BP-AdaBoost fusion algorithm. The results show that the model, configured with 7 input layer neurons, 10 hidden layer neurons, 1 output node, a learning rate of 0.1, and 300 training iterations, achieved a correlation coefficient of 0.962. The mean absolute error (MAE) of the predicted sound speed was 10.19 m/s, and the mean relative error (MAPE) was 0.66%. These results are better than those of single-parameter and dual-parameter prediction equations and other machine learning models. The BP-AdaBoost model prediction method of sound speed of seafloor sediments established in this paper is better than the single-parameter and dual-parameter prediction equations and other prediction models, and it can provide a new way for the prediction of sound speed of seafloor sediments in the study area.
引用
收藏
页码:1315 / 1323
页数:9
相关论文
共 22 条
[1]  
ANDERSON RS, 1974, PHYSICS SOUND MARINE, P481, DOI DOI 10.1007/978-1-4684-0838-6_18
[2]   Sources and transportation of suspended matter and sediment in the southern Yellow Sea: Evidence from stable carbon isotopes [J].
Cai, DL ;
Shi, XF ;
Zhou, WJ ;
Liu, WG ;
Zhang, SF ;
Cao, YN ;
Han, YB .
CHINESE SCIENCE BULLETIN, 2003, 48 :21-29
[3]   Predicting the Sound Speed of Seafloor Sediments in the East China Sea Based on an XGBoost Algorithm [J].
Chen, Mujun ;
Meng, Xiangmei ;
Kan, Guangming ;
Wang, Jingqiang ;
Li, Guanbao ;
Liu, Baohua ;
Liu, Chenguang ;
Liu, Yanguang ;
Liu, Yuanxu ;
Lu, Junjie .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
[4]   Predicting the sound speed of seafloor sediments in the Middle area of the Southern Yellow Sea based on a BP neural network model [J].
Chen, Mujun ;
Meng, Xiangmei ;
Kan, Guangming ;
Wang, Jingqiang ;
Li, Guanbao ;
Liu, Baohua ;
Liu, Chenguang ;
Liu, Yanguang ;
Meng, Wenjing .
MARINE GEORESOURCES & GEOTECHNOLOGY, 2023, 41 (06) :662-670
[5]  
[陈文景 Chen Wenjing], 2016, [海洋学报, Acta Oceanologica Sinica], V38, P116
[6]  
Cheng J., 2011, CHARACTERIZATION SED
[7]   SOUND-VELOCITY AND RELATED PROPERTIES OF MARINE-SEDIMENTS [J].
HAMILTON, EL ;
BACHMAN, RT .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1982, 72 (06) :1891-1904
[8]   ELASTIC PROPERTIES OF MARINE SEDIMENTS [J].
HAMILTON, EL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (02) :579-+
[9]   Sound Velocity Predictive Model Based on Physical Properties [J].
Hou, Z. Y. ;
Wang, J. Q. ;
Chen, Z. ;
Yan, W. ;
Tian, Y. H. .
EARTH AND SPACE SCIENCE, 2019, 6 (08) :1561-1568
[10]  
[侯正瑜 Hou Zhengyu], 2013, [海洋科学, Marine Sciences], V37, P77