Phase-field approach for fracture prediction of brittle cracked components

被引:0
|
作者
Ahmadian, Hossein [1 ]
Mehraban, Mohammad R. [1 ]
Ayatollahi, Majid R. [1 ]
Navidtehrani, Yousef [2 ]
Bahrami, Bahador [1 ]
机构
[1] Iran Univ Sci & Technol, Ctr Excellence Expt Solid Mech & Dynam, Sch Mech Engn, Fatigue & Fracture Res Lab, Tehran 16846, Iran
[2] Univ Oviedo, Dept Construct & Mfg Engn, Gijon 33203, Spain
关键词
Phase-field method; Brittle fracture; Mixed-mode loading conditions; Fracture initiation angle; Fracture load; FORMULATION; MODELS; PMMA; CRITERION; SPECIMEN; STRESS;
D O I
10.1016/j.engfracmech.2024.110417
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The versatility of the phase-field method (PFM) in predicting elusive fracture trajectories has attracted researchers in recent years; however, limited focus has been directed toward fracture load prediction for brittle materials. This study presents a computationally low-cost and straightforward framework based on phase-field modeling to predict the fracture loads and fracture initiantion angles of brittle cracked components under in-plane loading conditions. The framework was assessed through a comprehensive comparison between numerical and experimental data for various specimens and test configurations. Despite using 1D analytical formulations for calculating phase-field parameters, great accordance between empirical data and simulation results demonstrated the effectiveness of the proposed model. A technique that restricts the computation of the phase-field variable merely around the crack tip was applied to significantly reduce the computational costs of PFM simulations. Furthermore, we examined different numerical aspects and confirmed the robustness of the proposed procedure.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A phase-field fracture model for brittle anisotropic materials
    Luo, Zhiheng
    Chen, Lin
    Wang, Nan
    Li, Bin
    COMPUTATIONAL MECHANICS, 2022, 70 (05) : 931 - 943
  • [32] An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture
    Noii, Nima
    Aldakheel, Fadi
    Wick, Thomas
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 361
  • [33] A space-time approach for the simulation of brittle fracture with phase-field models in elastodynamics
    Feutang, F. K.
    Lejeunes, S.
    Eyheramendy, D.
    COMPUTERS & STRUCTURES, 2025, 307
  • [34] A phase-field approach to conchoidal fracture
    Bilgen, Carola
    Kopanicakova, Alena
    Krause, Rolf
    Weinberg, Kerstin
    MECCANICA, 2018, 53 (06) : 1203 - 1219
  • [35] A phase-field approach to conchoidal fracture
    Carola Bilgen
    Alena Kopaničáková
    Rolf Krause
    Kerstin Weinberg
    Meccanica, 2018, 53 : 1203 - 1219
  • [36] A FFT solver for variational phase-field modeling of brittle fracture
    Chen, Yang
    Vasiukov, Dmytro
    Gelebart, Lionel
    Park, Chung Hae
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 : 167 - 190
  • [37] Phase-field modeling of fracture for quasi-brittle materials
    Ulloa, Jacinto
    Rodriguez, Patricio
    Samaniego, Cristobal
    Samaniego, Esteban
    UNDERGROUND SPACE, 2019, 4 (01) : 10 - 21
  • [38] Evaluation of variational phase-field models for dynamic brittle fracture
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    Wu, Jian-Ying
    ENGINEERING FRACTURE MECHANICS, 2020, 235
  • [39] A phase-field framework for brittle fracture in quasi-crystals
    Li, Peidong
    Li, Weidong
    Fan, Haidong
    Wang, Qingyuan
    Zhou, Kun
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 279
  • [40] Deterministic and stochastic phase-field modeling of anisotropic brittle fracture
    Nagaraja, Sindhu
    Roemer, Ulrich
    Matthies, Hermann G.
    De Lorenzis, Laura
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 408