Phase-field approach for fracture prediction of brittle cracked components

被引:0
|
作者
Ahmadian, Hossein [1 ]
Mehraban, Mohammad R. [1 ]
Ayatollahi, Majid R. [1 ]
Navidtehrani, Yousef [2 ]
Bahrami, Bahador [1 ]
机构
[1] Iran Univ Sci & Technol, Ctr Excellence Expt Solid Mech & Dynam, Sch Mech Engn, Fatigue & Fracture Res Lab, Tehran 16846, Iran
[2] Univ Oviedo, Dept Construct & Mfg Engn, Gijon 33203, Spain
关键词
Phase-field method; Brittle fracture; Mixed-mode loading conditions; Fracture initiation angle; Fracture load; FORMULATION; MODELS; PMMA; CRITERION; SPECIMEN; STRESS;
D O I
10.1016/j.engfracmech.2024.110417
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The versatility of the phase-field method (PFM) in predicting elusive fracture trajectories has attracted researchers in recent years; however, limited focus has been directed toward fracture load prediction for brittle materials. This study presents a computationally low-cost and straightforward framework based on phase-field modeling to predict the fracture loads and fracture initiantion angles of brittle cracked components under in-plane loading conditions. The framework was assessed through a comprehensive comparison between numerical and experimental data for various specimens and test configurations. Despite using 1D analytical formulations for calculating phase-field parameters, great accordance between empirical data and simulation results demonstrated the effectiveness of the proposed model. A technique that restricts the computation of the phase-field variable merely around the crack tip was applied to significantly reduce the computational costs of PFM simulations. Furthermore, we examined different numerical aspects and confirmed the robustness of the proposed procedure.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Fracture modeling of brittle biomaterials by the phase-field method
    Wu, Chi
    Fang, Jianguang
    Zhang, Zhongpu
    Entezari, Ali
    Sun, Guangyong
    Swain, Michael, V
    Li, Qing
    ENGINEERING FRACTURE MECHANICS, 2020, 224 (224)
  • [22] FINITE ELEMENT PHASE-FIELD MODELLING OF BRITTLE FRACTURE
    Santos, Hugo A. F. A.
    Silberschmidt, Vadim V.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 231 - 236
  • [23] An assessment of anisotropic phase-field models of brittle fracture
    Scherer, Jean-Michel
    Brach, Stella
    Bleyer, Jeremy
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 395
  • [24] A phase-field model for brittle fracture of anisotropic materials
    Gmati, Hela
    Mareau, Charles
    Ammar, Amine
    El Arem, Saber
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (15) : 3362 - 3381
  • [25] Abaqus implementation of phase-field model for brittle fracture
    Msekh, Mohammed A.
    Sargado, Juan Michael
    Jamshidian, Mostafa
    Areias, Pedro Miguel
    Rabczuk, Timon
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 96 : 472 - 484
  • [26] A phase-field fracture model for brittle anisotropic materials
    Zhiheng Luo
    Lin Chen
    Nan Wang
    Bin Li
    Computational Mechanics, 2022, 70 : 931 - 943
  • [27] A convergence study of phase-field models for brittle fracture
    Linse, Thomas
    Hennig, Paul
    Kaestner, Markus
    de Borst, Rene
    ENGINEERING FRACTURE MECHANICS, 2017, 184 : 307 - 318
  • [28] Phase-field modeling of brittle fracture in heterogeneous bars
    Vicentini, F.
    Carrara, P.
    De Lorenzis, L.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [29] On penalization in variational phase-field models of brittle fracture
    Gerasimov, T.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 354 : 990 - 1026
  • [30] Phase-field description of brittle fracture in plates and shells
    Kiendl, Josef
    Ambati, Marreddy
    De Lorenzis, Laura
    Gomez, Hector
    Reali, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 374 - 394