PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION

被引:0
作者
Vandana [1 ]
Budhiraja, Rajeev [1 ]
Ahmad, Kamran [2 ]
Siddiqui, Aliya Naaz [2 ]
机构
[1] Maharishi Markandeshwar Deemed Univ, Dept Math & Humanities, Ambala 133207, Haryana, India
[2] Galgotias Univ, Sch Basic Sci, Div Math, Greater Noida 203201, Uttar Pradesh, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2024年 / 39卷 / 03期
关键词
Ricci-Yamabe soliton; Para-Sasakian manifold; Quasi-Einstein manifold;
D O I
10.22190/FUMI230825034V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the year 2019, Guler and Crasmareanu [6] conducted an investigation into another geometric flow known as the Ricci-Yamabe map. This map is nothing but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective of the current paper is to provide a characterization of a Ricci Yamabe soliton on a para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold is shrinking, expanding, or steady. Subsequently, we generalize these findings to RicciYamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian manifold admitting a Ricci-Yamabe soliton which satisfies our results.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 17 条
[11]  
Mandal K., 2015, Annals of West University of Timisoara-Mathematics and Computer Science, V53, P137, DOI [10.1515/awutm-2015-0007, DOI 10.1515/AWUTM-2015-0007]
[12]   Some results on η-Yamabe solitons in 3-dimensional trans-Sasakian manifold [J].
Roy, S. ;
Dey, S. ;
Bhattacharyya, A. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (01) :158-170
[13]  
Roy S, 2021, Arxiv, DOI arXiv:2109.04700
[14]   On pseudo quasi-Einstein manifolds [J].
Shaikh, Absos Ali .
PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (02) :119-146
[15]  
Siddiqui Aliya Naaz, 2021, Balkan Journal of Geometry and Its Applications, V26, P126
[16]  
Yano K., 1984, Series in Pure Mathematics, V3
[17]   Canonical connections on paracontact manifolds [J].
Zamkovoy, Simeon .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (01) :37-60