PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION

被引:0
作者
Vandana [1 ]
Budhiraja, Rajeev [1 ]
Ahmad, Kamran [2 ]
Siddiqui, Aliya Naaz [2 ]
机构
[1] Maharishi Markandeshwar Deemed Univ, Dept Math & Humanities, Ambala 133207, Haryana, India
[2] Galgotias Univ, Sch Basic Sci, Div Math, Greater Noida 203201, Uttar Pradesh, India
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2024年 / 39卷 / 03期
关键词
Ricci-Yamabe soliton; Para-Sasakian manifold; Quasi-Einstein manifold;
D O I
10.22190/FUMI230825034V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the year 2019, Guler and Crasmareanu [6] conducted an investigation into another geometric flow known as the Ricci-Yamabe map. This map is nothing but a scalar combination of the Ricci and the Yamabe flow [7]. The primary objective of the current paper is to provide a characterization of a Ricci Yamabe soliton on a para-Sasakian manifold [17]. To commence, we prove that a para-Sasakian manifold admits a nearly quasi-Einstein manifold. Moreover, we discuss whether such a manifold is shrinking, expanding, or steady. Subsequently, we generalize these findings to RicciYamabe solitons on para-Sasakian manifolds equipped with a quarter symmetric metric connection. Lastly, we furnish an illustration of a three-dimensional para-Sasakian manifold admitting a Ricci-Yamabe soliton which satisfies our results.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 17 条
[1]   CR-SUBMANIFOLDS OF A LORENTZIAN PARA-SASAKIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION [J].
Ahmad, Aobin .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (01) :25-32
[2]   On conformal solutions of the Yamabe flow [J].
Barbosa, Ezequiel ;
Ribeiro, Ernani, Jr. .
ARCHIV DER MATHEMATIK, 2013, 101 (01) :79-89
[3]   Gradient Einstein solitons [J].
Catino, Giovanni ;
Mazzieri, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :66-94
[4]  
Siddiqi MD, 2020, Arxiv, DOI arXiv:2004.14124
[5]  
GAzI A. K., 2008, Novi Sad J. Math., V38, P121
[6]  
GOLAB S, 1975, TENSOR, V29, P249
[7]   Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy [J].
Guler, Sinem ;
Crasmareanu, Mircea .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) :2631-2641
[8]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[9]  
Hamilton RS., 1988, Contemp. Math, V71, P237, DOI [10.1090/conm/071/954419, DOI 10.1090/CONM/071/954419]
[10]  
HUI S. K., 2017, Ilirias J. Math., V6, P25