Minimum information dependence modeling

被引:0
作者
Sei, Tomonari [1 ]
Yano, Keisuke [2 ]
机构
[1] Univ Tokyo, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[2] Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
关键词
Conditional inference; copula; earthquake data; graphical model; mixed-domain; Monte Carlo method; EXPONENTIAL-FAMILIES; MAXIMUM-LIKELIHOOD; OPTIMAL TRANSPORT; GEOMETRY; DISTRIBUTIONS; MINIMIZATION; COPULAS;
D O I
10.3150/23-BEJ1687
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a method to construct a joint statistical model for mixed-domain data to analyze their dependence. Multivariate Gaussian and log-linear models are particular examples of the proposed model. It is shown that the functional equation defining the model has a unique solution under fairly weak conditions. The model is characterized by two orthogonal parameters: the dependence parameter and the marginal parameter. To estimate the dependence parameter, a conditional inference together with a sampling procedure is proposed and is shown to provide a consistent estimator. Illustrative examples of data analyses involving penguins and earthquakes are presented.
引用
收藏
页码:2623 / 2643
页数:21
相关论文
共 53 条
[31]  
Japan Meteorological Agency, 2022, The seismological bulletin of Japan
[32]   INFORMATION THEORY AND STATISTICAL MECHANICS .2. [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 108 (02) :171-190
[33]   On a class of circulas: copulas for circular distributions [J].
Jones, M. C. ;
Pewsey, Arthur ;
Kato, Shogo .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (05) :843-862
[34]  
Kou SG, 1996, STAT SINICA, V6, P809
[35]   On an interaction function for copulas [J].
Kurowicka, Dorota ;
van Horssen, Wim T. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 138 :127-142
[36]   From the Schrodinger problem to the Monge-Kantorovich problem [J].
Leonard, Christian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) :1879-1920
[37]   TESTING THE EQUALITY OF 2 INDEPENDENT BINOMIAL PROPORTIONS [J].
LITTLE, RJA .
AMERICAN STATISTICIAN, 1989, 43 (04) :283-288
[38]   Minimally informative distributions with given rank correlation for use in uncertainty analysis [J].
Meeuwissen, AMH ;
Bedford, T .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 57 (1-4) :143-174
[39]   ESTIMATION IN EXPONENTIAL FAMILIES ON PERMUTATIONS [J].
Mukherjee, Sumit .
ANNALS OF STATISTICS, 2016, 44 (02) :853-875
[40]   Computational Optimal Transport [J].
Peyre, Gabriel ;
Cuturi, Marco .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 11 (5-6) :355-607