Minimum information dependence modeling

被引:0
作者
Sei, Tomonari [1 ]
Yano, Keisuke [2 ]
机构
[1] Univ Tokyo, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[2] Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
关键词
Conditional inference; copula; earthquake data; graphical model; mixed-domain; Monte Carlo method; EXPONENTIAL-FAMILIES; MAXIMUM-LIKELIHOOD; OPTIMAL TRANSPORT; GEOMETRY; DISTRIBUTIONS; MINIMIZATION; COPULAS;
D O I
10.3150/23-BEJ1687
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a method to construct a joint statistical model for mixed-domain data to analyze their dependence. Multivariate Gaussian and log-linear models are particular examples of the proposed model. It is shown that the functional equation defining the model has a unique solution under fairly weak conditions. The model is characterized by two orthogonal parameters: the dependence parameter and the marginal parameter. To estimate the dependence parameter, a conditional inference together with a sampling procedure is proposed and is shown to provide a consistent estimator. Illustrative examples of data analyses involving penguins and earthquakes are presented.
引用
收藏
页码:2623 / 2643
页数:21
相关论文
共 53 条
[1]   Finite-Sample Concentration of the Multinomial in Relative Entropy [J].
Agrawal, Rohit .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (10) :6297-6302
[2]  
ALBERT A, 1984, BIOMETRIKA, V71, P1
[3]   Information geometry on hierarchy of probability distributions [J].
Amari, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) :1701-1711
[4]  
[Anonymous], 2000, Methods of Information Geometry. Translations of Mathematical Monographs, DOI DOI 10.1090/MMONO/191
[5]  
[Anonymous], 1996, Graphical Models. Oxford Statistical Science Series
[6]   Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas [J].
Bedford, Tim ;
Daneshkhah, Alireza ;
Wilson, Kevin J. .
RISK ANALYSIS, 2016, 36 (04) :792-815
[7]   On the construction of minimum information bivariate copula families [J].
Bedford, Tim ;
Wilson, Kevin J. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2014, 66 (04) :703-723
[8]   ENTROPY MINIMIZATION, DAD PROBLEMS, AND DOUBLY STOCHASTIC KERNELS [J].
BORWEIN, JM ;
LEWIS, AS ;
NUSSBAUM, RD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 123 (02) :264-307
[9]  
Bose A., 2018, Texts and Readings in Mathematics, V75, DOI [10.1007/978-981-13-2248-8, DOI 10.1007/978-981-13-2248-8]
[10]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115