Simultaneous change-point detection and curve estimation

被引:0
作者
Lu, Zhaoying [1 ]
Hao, Ning [1 ]
Zhang, Hao Helen [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
B-splines; Jump regression; Nonparametric regression; Normalized fused Lasso; BINARY SEGMENTATION; JUMP-DETECTION; REGRESSION; NUMBER; INFORMATION; ALGORITHM; SELECTION; MODELS;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we focus on a nonparametric regression model that accounts for discontinuities. We propose a method called Simultaneous CHange-point detection And Curve Estimation (SCHACE) for effectively detecting jumps in a data sequence and accurately capturing nonlinear trends between these jumps in the mean curve. The SCHACE is a unified regularization framework that incorporates two statistical tools: the normalized fused Lasso for change-point detection and B-splines for curve estimation. Notably, this approach is a single-step method that does not require iteration and is straightforward to implement. We demonstrate the advantages of the SCHACE by simulated and real-world data examples.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 43 条
  • [1] Abramovich F., 2007, Sankhya: The Indian Journal Of Statistics, P1
  • [2] Antoniadis A., 2001, J STAT SOFTW, V6, P1, DOI [10.18637/jss.v006.i06, DOI 10.18637/JSS.V006.I06]
  • [3] Extended Bayesian information criteria for model selection with large model spaces
    Chen, Jiahua
    Chen, Zehua
    [J]. BIOMETRIKA, 2008, 95 (03) : 759 - 771
  • [4] Automatic Bayesian curve fitting
    Denison, DGT
    Mallick, BK
    Smith, AFM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 333 - 350
  • [5] IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE
    DONOHO, DL
    JOHNSTONE, IM
    [J]. BIOMETRIKA, 1994, 81 (03) : 425 - 455
  • [6] Eubank R., 1999, Nonparametric regression and spline smoothing
  • [7] Fan J., 2018, Local Polynomial Modelling and Its Applications
  • [8] Exact Bayesian curve fitting and signal segmentation
    Fearnhead, P
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (06) : 2160 - 2166
  • [9] Foygel R., 2010, ADV NEURAL INF PROCE, V23, P2020, DOI DOI 10.48550/ARXIV.1011.6640
  • [10] Multiscale change point inference
    Frick, Klaus
    Munk, Axel
    Sieling, Hannes
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (03) : 495 - 580