Federated Long-Tailed Learning by Retraining the Biased Classifier with Prototypes

被引:0
作者
Li, Yang [1 ]
Li, Kan [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
来源
FRONTIERS IN CYBER SECURITY, FCS 2023 | 2024年 / 1992卷
基金
北京市自然科学基金;
关键词
Federated learning; Long-tailed data; Prototype learning; Privacy protection;
D O I
10.1007/978-981-99-9331-4_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning is a privacy-preserving framework that collaboratively trains the global model without sharing raw data among clients. However, one significant issue encountered in federated learning is that biased classifiers affect the classification performance of the global model, especially when training on long-tailed data. Retraining the classifier on balanced datasets requires sharing the client's information and poses the risk of privacy leakage. We propose a method for retraining the biased classifier using prototypes, that leverage the comparison of distances between local and global prototypes to guide the local training process. We conduct experiments on CIFAR-10-LT and CIFAR-100-LT, and our approach outperforms the accuracy of baseline methods, with accuracy improvements of up to 10%.
引用
收藏
页码:575 / 585
页数:11
相关论文
共 29 条
[1]  
Bonawitz K, 2019, Arxiv, DOI arXiv:1902.01046
[2]  
Cao KD, 2019, ADV NEUR IN, V32
[3]  
Chen HY, 2022, Arxiv, DOI arXiv:2206.11488
[4]  
Chen ZH, 2022, Arxiv, DOI [arXiv:2206.14988, 10.48550/arXiv.2206.14988]
[5]  
Chu X., 2020, arXiv, DOI 10.48550/arXiv.2008.03673
[6]  
de la Torre Lydia, 2018, A guide to the california consumer privacy act of 2018
[7]  
He CY, 2020, Arxiv, DOI arXiv:2007.13518
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Kang B., 2019, arXiv
[10]  
Karimireddy SP, 2020, PR MACH LEARN RES, V119