Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma In Situ, Nodular Melanoma, and Superficial Spreading Melanoma

被引:18
作者
Lin, Teng-Li [1 ]
Lu, Chun-Te [2 ,3 ]
Karmakar, Riya [4 ]
Nampalley, Kalpana [4 ]
Mukundan, Arvind [4 ]
Hsiao, Yu-Ping [5 ,6 ]
Hsieh, Shang-Chin [7 ]
Wang, Hsiang-Chen [4 ,8 ]
机构
[1] Dalin Tzu Chi Gen Hosp, Dept Dermatol, 2,Min-Sheng Rd,Dalin Town, Chiayi 62247, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Med, Coll Med, Sch Med, Sec 2,Li Nong St, Taipei 112304, Taiwan
[3] Taichung Vet Gen Hosp, Dept Surg, Div Plast & Reconstruct Surg, 1650 Taiwan Blvd Sect 4, Taichung 407219, Taiwan
[4] Natl Chung Cheng Univ, Dept Mech Engn, 168 Univ Rd Min Hsiung, Chiayi 62102, Taiwan
[5] Chung Shan Med Univ Hosp, Dept Dermatol, 110,Sec 1,Jianguo N Rd, Taichung 40201, Taiwan
[6] Chung Shan Med Univ, Inst Med, Sch Med, 110,Sec 1,Jianguo N Rd, Taichung 40201, Taiwan
[7] Kaohsiung Armed Forces Gen Hosp, Dept Surg, Div Gen Surg, 2 Zhongzheng 1st Rd, Kaohsiung 802, Taiwan
[8] Hitspectra Intelligent Technol Co Ltd, Dept Technol Dev, Kaohsiung 80661, Taiwan
关键词
skin cancer; acral lentiginous melanoma; melanoma in situ; modular melanoma; superficial spreading melanoma; hyperspectral imaging; band selection; spectrum-aided visual enhancer; NARROW-BAND; DIFFERENTIAL-DIAGNOSIS; CANCER;
D O I
10.3390/diagnostics14151672
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Skin cancer is the predominant form of cancer worldwide, including 75% of all cancer cases. This study aims to evaluate the effectiveness of the spectrum-aided visual enhancer (SAVE) in detecting skin cancer. This paper presents the development of a novel algorithm for snapshot hyperspectral conversion, capable of converting RGB images into hyperspectral images (HSI). The integration of band selection with HSI has facilitated the identification of a set of narrow band images (NBI) from the RGB images. This study utilizes various iterations of the You Only Look Once (YOLO) machine learning (ML) framework to assess the precision, recall, and mean average precision in the detection of skin cancer. YOLO is commonly preferred in medical diagnostics due to its real-time processing speed and accuracy, which are essential for delivering effective and efficient patient care. The precision, recall, and mean average precision (mAP) of the SAVE images show a notable enhancement in comparison to the RGB images. This work has the potential to greatly enhance the efficiency of skin cancer detection, as well as improve early detection rates and diagnostic accuracy. Consequently, it may lead to a reduction in both morbidity and mortality rates.
引用
收藏
页数:18
相关论文
共 45 条
[1]  
Agrahari P., 2020, P FUT COMM NETW TECH, P179
[2]  
Ahmadi Mehr Reza, 2022, J Biomed Phys Eng, V12, P559, DOI [10.31661/jbpe.v0i0.2207-1517, 10.31661/jbpe.v0i0.2207-1517]
[3]   A systematic and comprehensive investigation of methods to build and evaluate fault prediction models [J].
Arisholm, Erik ;
Briand, Lionel C. ;
Johannessen, Eivind B. .
JOURNAL OF SYSTEMS AND SOFTWARE, 2010, 83 (01) :2-17
[4]   Final Version of 2009 AJCC Melanoma Staging and Classification [J].
Balch, Charles M. ;
Gershenwald, Jeffrey E. ;
Soong, Seng-jaw ;
Thompson, John F. ;
Atkins, Michael B. ;
Byrd, David R. ;
Buzaid, Antonio C. ;
Cochran, Alistair J. ;
Coit, Daniel G. ;
Ding, Shouluan ;
Eggermont, Alexander M. ;
Flaherty, Keith T. ;
Gimotty, Phyllis A. ;
Kirkwood, John M. ;
McMasters, Kelly M. ;
Mihm, Martin C., Jr. ;
Morton, Donald L. ;
Ross, Merrick I. ;
Sober, Arthur J. ;
Sondak, Vernon K. .
JOURNAL OF CLINICAL ONCOLOGY, 2009, 27 (36) :6199-6206
[5]   Acral lentiginous melanoma: Basic facts, biological characteristics and research perspectives of an understudied disease [J].
Basurto-Lozada, Patricia ;
Molina-Aguilar, Christian ;
Castaneda-Garcia, Carolina ;
Estefania Vazquez-Cruz, Martha ;
Isaac Garcia-Salinas, Omar ;
Alvarez-Cano, Alethia ;
Martinez-Said, Hector ;
Roldan-Marin, Rodrigo ;
Adams, David J. ;
Possik, Patricia A. ;
Daniela Robles-Espinoza, Carla .
PIGMENT CELL & MELANOMA RESEARCH, 2021, 34 (01) :59-71
[6]  
Lipton ZC, 2014, Arxiv, DOI [arXiv:1402.1892, DOI 10.48550/ARXIV.1402.1892]
[7]  
Chien CT, 2024, Arxiv, DOI [arXiv:2403.11249, DOI 10.1049/ELL2.13248]
[8]   Improving the early diagnosis of early nodular melanoma: can we do better? [J].
Corneli, Paola ;
Zalaudek, Iris ;
Rizzi, Giovanni Magaton ;
di Meo, Nicola .
EXPERT REVIEW OF ANTICANCER THERAPY, 2018, 18 (10) :1007-1012
[9]   Skin Cancer Detection: A Review Using Deep Learning Techniques [J].
Dildar, Mehwish ;
Akram, Shumaila ;
Irfan, Muhammad ;
Khan, Hikmat Ullah ;
Ramzan, Muhammad ;
Mahmood, Abdur Rehman ;
Alsaiari, Soliman Ayed ;
Saeed, Abdul Hakeem M. ;
Alraddadi, Mohammed Olaythah ;
Mahnashi, Mater Hussen .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (10)
[10]   Vascular contrast in narrow-band and white light imaging [J].
Du Le, V. N. ;
Wang, Quanzeng ;
Gould, Taylor ;
Ramella-Roman, Jessica C. ;
Pfefer, T. Joshua .
APPLIED OPTICS, 2014, 53 (18) :4061-4071