Melatonin modulates TLR4/MyD88/NF-κB signaling pathway to ameliorate cognitive impairment in sleep-deprived rats

被引:1
|
作者
Yin, Chao [1 ,2 ,3 ]
Zhang, Meiya [1 ,2 ,3 ]
Cheng, Li [1 ]
Ding, Li [1 ,2 ,3 ]
Lv, Qing [1 ]
Huang, Zixuan [1 ]
Zhou, Jiaqi [1 ]
Chen, Jianmei [1 ]
Wang, Ping [2 ,3 ]
Zhang, Shunbo [1 ]
You, Qiuyun [1 ,2 ,3 ]
机构
[1] Hubei Univ Chinese Med, Sch Pharm, Wuhan, Peoples R China
[2] Hubei Univ Chinese Med, Engn Res Ctr TCM Protect Technol & New Prod Dev El, Minist Educ, Wuhan, Peoples R China
[3] Hubei Univ Chinese Med, Hubei Shizhen Lab, Wuhan, Peoples R China
关键词
melatonin; sleep deprivation; cognitive impairmen; TLR4/MYD88/NF-kappa B signaling pathway; neuroinflammation; MICROBIOTA; DISEASE;
D O I
10.3389/fphar.2024.1430599
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Sleep deprivation (SD) is commonplace in today's fast-paced society. SD is a severe public health problem globally since it may cause cognitive decline and even neurodegenerative disorders like Alzheimer's disease. Melatonin (MT) is a natural chemical secreted by the pineal gland with neuroprotective effects. The purpose of this study was to investigate the protective effect and mechanism of MT on chronic sleep deprivation-induced cognitive impairment. A 3-week modified multi-platform method was used to create the SD rat model. The Morris water maze test (MWM), Tissue staining (including Hematoxylin and Eosin (H & E) staining, Nissl staining, and immunofluorescence), Western blot, Enzyme-linked immunosorbent assay (ELISA), and Quantitative real-time polymerase chain reaction (qPCR) were used to investigate the protective effect and mechanism of MT in ameliorating cognitive impairment in SD rats. The results showed that MT (50 and 100 mg/kg) significantly improved cognitive function in rats, as evidenced by a shortening of escape latency and increased time of crossing the platform and time spent in the quadrant. Additionally, MT therapy alleviated hippocampus neurodegeneration and neuronal loss while lowering levels of pathogenic factors (LPS) and inflammatory indicators (IL-1 beta, IL-6, TNF-alpha, iNOS, and COX2). Furthermore, MT treatment reversed the high expression of A beta 42 and Iba1 as well as the low expression of ZO-1 and occludin, and inhibited the SD-induced TLR4/MyD88/NF-kappa B signaling pathway. In summary, MT ameliorated spatial recognition and learning memory dysfunction in SD rats by reducing neuroinflammation and increasing neuroprotection while inhibiting the TLR4/MyD88/NF-kappa B signaling pathway. Our study supports the use of MT as an alternate treatment for SD with cognitive impairment.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Grape seed proanthocyanidin extract ameliorates murine autoimmune arthritis through regulation of TLR4/MyD88/NF-κB signaling pathway
    Kim, Sang-Hyon
    Bang, Jihye
    Son, Chang-Nam
    Baek, Won-Ki
    Kim, Ji-Min
    KOREAN JOURNAL OF INTERNAL MEDICINE, 2018, 33 (03) : 612 - 621
  • [22] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Zhu, Kefu
    Wang, Xihao
    Weng, Yingzheng
    Mao, Genxiang
    Bao, Yizhong
    Lou, Jiangjie
    Wu, Shaoze
    Jin, Weihua
    Tang, Lijiang
    CARDIOVASCULAR DRUGS AND THERAPY, 2024, 38 (01) : 69 - 78
  • [23] Research on the mechanism of antidepressive effect of Suanzaoren Decoction through TLR4/MyD88/NF-κB pathway and Wnt/β-catenin pathway
    Du, Yiyang
    Yan, Tingxu
    Wu, Bo
    He, Bosai
    Jia, Ying
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 319
  • [24] FGF10 Attenuates Experimental Traumatic Brain Injury through TLR4/MyD88/NF-κB Pathway
    Hou, Qinhan
    Chen, Hongmou
    Liu, Quan
    Yan, Xianlei
    CELLS TISSUES ORGANS, 2021, 209 (4-6) : 248 - 256
  • [25] Inosine Pretreatment Attenuates LPS-Induced Lung Injury through Regulating the TLR4/MyD88/NF-κB Signaling Pathway In Vivo
    Mao, Bingyong
    Guo, Weiling
    Tang, Xin
    Zhang, Qiuxiang
    Yang, Bo
    Zhao, Jianxin
    Cui, Shumao
    Zhang, Hao
    NUTRIENTS, 2022, 14 (14)
  • [26] Dietary Fiber-Derived Butyrate Alleviates Piglet Weaning Stress by Modulating the TLR4/MyD88/NF-κB Pathway
    Huangfu, Weikang
    Ma, Jixiang
    Zhang, Yan
    Liu, Mengqi
    Liu, Boshuai
    Zhao, Jiangchao
    Wang, Zhichang
    Shi, Yinghua
    NUTRIENTS, 2024, 16 (11)
  • [27] CD73 Attenuates Alcohol-Induced Liver Injury and Inflammation via Blocking TLR4/MyD88/NF-κB Signaling Pathway
    Liu, Zhen-Ni
    Wu, Xue
    Fang, Qian
    Li, Zi-Xuan
    Xia, Guo-Qing
    Cai, Jun-Nan
    Lv, Xiong-Wen
    JOURNAL OF INFLAMMATION RESEARCH, 2022, 15 : 53 - 70
  • [28] The ameliorative effect of melatonin on LPS-induced Sertoli cells inflammatory and tight junctions damage via suppression of the TLR4/MyD88/NF-κB signaling pathway in newborn calf
    Feng, Rui
    Adeniran, Samson O.
    Huang, Fushuo
    Li, Yulong
    Ma, Mingjun
    Zheng, Peng
    Zhang, Guixue
    THERIOGENOLOGY, 2022, 179 : 103 - 116
  • [29] Fluoxetine attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage: a possible role for the regulation of TLR4/MyD88/NF-κB signaling pathway
    Fu-yi Liu
    Jing Cai
    Chun Wang
    Wu Ruan
    Guo-ping Guan
    Hai-zhou Pan
    Jian-ru Li
    Cong Qian
    Jing-sen Chen
    Lin Wang
    Gao Chen
    Journal of Neuroinflammation, 15
  • [30] Betanin improves motor function and alleviates experimental Parkinsonism via downregulation of TLR4/MyD88/NF-?B pathway: Molecular docking and biological investigations
    ElSayed, Mohamed H.
    Atif, Huda M.
    Eladl, Mohamed Ahmed
    Elaidy, Samah M.
    Helaly, Ahmed M. N.
    Hisham, Fatma Azzahraa
    Farag, Noha E.
    Osman, Noura M. S.
    Ibrahiem, Afaf T.
    Khella, Heba W. Z.
    Bilasy, Shymaa E.
    Albalawi, Marzough Aziz
    Helal, Mohamed A.
    Alzlaiq, Wafa Ali
    Zaiton, Sawsan A.
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 164