Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction

被引:1
|
作者
Fajemisin, Jesutofunmi Ayo [1 ,2 ]
Gonzalez, Glebys [2 ]
Rosenberg, Stephen A. [2 ,3 ]
Ullah, Ghanim [1 ]
Redler, Gage [3 ]
Latifi, Kujtim [3 ]
Moros, Eduardo G. [1 ,2 ,3 ]
El Naqa, Issam [1 ,2 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Machine Learning Dept, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Radiat Oncol Dept, Tampa, FL 33612 USA
关键词
MRI; MRI-Linac; radiomics; clinical outcomes; machine learning; MRI;
D O I
10.3390/tomography10090107
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of tumors and normal tissues. This development has significantly impacted the imaging and treatment of cancers. Radiomics is the process of extracting high-dimensional features from medical images. Several studies have shown that these extracted features may be used to build machine-learning models for the prediction of treatment outcomes of cancer patients. Various feature selection techniques and machine models interrogate the relevant radiomics features for predicting cancer treatment outcomes. This study aims to provide an overview of MRI radiomics features used in predicting clinical treatment outcomes with machine learning techniques. The review includes examples from different disease sites. It will also discuss the impact of magnetic field strength, sample size, and other characteristics on outcome prediction performance.
引用
收藏
页码:1439 / 1454
页数:16
相关论文
共 50 条
  • [31] Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis
    Liang, Xueheng
    Yu, Xingyan
    Gao, Tianhu
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 150
  • [32] Magnetic Resonance-Guided High Intensity Focused Ultrasound Ablation of Breast Cancer
    Knuttel, Floortje M.
    van den Bosch, Maurice A. A. J.
    THERAPEUTIC ULTRASOUND, 2016, 880 : 65 - 81
  • [33] Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach
    Peng Yuling
    Zheng Yineng
    Tan Zeyun
    Liu Junhang
    Xiang Yayun
    Liu Huan
    Dai Linquan
    Xie Yanjun
    Wang Jingjie
    Zeng Chun
    Li, Yongmei
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2021, 53
  • [34] Technical Eligibility for Treatment of Magnetic Resonance-guided Focused Ultrasound Surgery
    Froeling, V.
    Kroencke, T. J.
    Schreiter, N. F.
    Scheurig-Muenkler, C.
    Collettini, F.
    Hamm, B.
    Beck, A.
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2014, 37 (02) : 445 - 450
  • [35] External Validation of Early Regression Index (ERITCP) as Predictor of Pathologic Complete Response in Rectal Cancer Using Magnetic Resonance-Guided Radiation Therapy
    Cusumano, Davide
    Boldrini, Luca
    Yadav, Poonam
    Yu, Gao
    Musurunu, Bindu
    Chiloiro, Giuditta
    Piras, Antonio
    Lenkowicz, Jacopo
    Placidi, Lorenzo
    Broggi, Sara
    Romano, Angela
    Mori, Martina
    Barbaro, Brunella
    Azario, Luigi
    Gambacorta, Maria Antonietta
    De Spirito, Marco
    Bassetti, Michael F.
    Yang, Yingli
    Fiorino, Claudio
    Valentini, Vincenzo
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (05): : 1347 - 1356
  • [36] Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics
    Huynh, Bao Ngoc
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Liland, Kristian Hovde
    Knudtsen, Ingerid Skjei
    Hoebers, Frank
    van Elmpt, Wouter
    Malinen, Eirik
    Dale, Einar
    Futsaether, Cecilia Marie
    FRONTIERS IN MEDICINE, 2023, 10
  • [37] The urologist's learning curve of "in-bore" magnetic resonance-guided prostate biopsy
    Rosenzweig, Barak
    Drori, Tomer
    Raz, Orit
    Goldinger, Gil
    Shlomai, Gadi
    Zilberman, Dorit E.
    Shechtman, Moshe
    Ramon, Jacob
    Dotan, Zohar A.
    Portnoy, Orith
    BMC UROLOGY, 2021, 21 (01)
  • [38] Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples
    Ubaldi, L.
    Valenti, V.
    Borgese, R. F.
    Collura, G.
    Fantacci, M. E.
    Ferrera, G.
    Iacoviello, G.
    Abbate, B. F.
    Laruina, F.
    Tripoli, A.
    Retico, A.
    Marrale, M.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 90 : 13 - 22
  • [39] The Role of Machine Learning and Radiomics for Treatment Response Prediction in Idiopathic Normal Pressure Hydrocephalus
    Sotoudeh, Houman
    Sadaatpour, Zahra
    Rezaei, Ali
    Shafaat, Omid
    Sotoudeh, Ehsan
    Tabatabaie, Mohsen
    Singhal, Aparna
    Tanwar, Manoj
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (10)
  • [40] Multisequence magnetic resonance imaging-based radiomics models for the prediction of microsatellite instability in endometrial cancer
    Song, Xiao-Li
    Luo, Hong-Jian
    Ren, Jia-Liang
    Yin, Ping
    Liu, Ying
    Niu, Jinliang
    Hong, Nan
    RADIOLOGIA MEDICA, 2023, 128 (02): : 242 - 251