Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction

被引:1
|
作者
Fajemisin, Jesutofunmi Ayo [1 ,2 ]
Gonzalez, Glebys [2 ]
Rosenberg, Stephen A. [2 ,3 ]
Ullah, Ghanim [1 ]
Redler, Gage [3 ]
Latifi, Kujtim [3 ]
Moros, Eduardo G. [1 ,2 ,3 ]
El Naqa, Issam [1 ,2 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Machine Learning Dept, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Radiat Oncol Dept, Tampa, FL 33612 USA
关键词
MRI; MRI-Linac; radiomics; clinical outcomes; machine learning; MRI;
D O I
10.3390/tomography10090107
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance imaging (MRI) is known for its accurate soft tissue delineation of tumors and normal tissues. This development has significantly impacted the imaging and treatment of cancers. Radiomics is the process of extracting high-dimensional features from medical images. Several studies have shown that these extracted features may be used to build machine-learning models for the prediction of treatment outcomes of cancer patients. Various feature selection techniques and machine models interrogate the relevant radiomics features for predicting cancer treatment outcomes. This study aims to provide an overview of MRI radiomics features used in predicting clinical treatment outcomes with machine learning techniques. The review includes examples from different disease sites. It will also discuss the impact of magnetic field strength, sample size, and other characteristics on outcome prediction performance.
引用
收藏
页码:1439 / 1454
页数:16
相关论文
共 50 条
  • [11] Prediction of carcinogenic human papillomavirus types in cervical cancer from multiparametric magnetic resonance images with machine learning-based radiomics models
    Ince, Okan
    Uysal, Emre
    Durak, Gorkem
    Onol, Suzan
    Yilmaz, Binnur Donmez
    Erturk, Sukru Mehmet
    Onder, Hakan
    DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2023, 29 (03): : 460 - 468
  • [12] Utilization of radiomics to predict long-term outcome of magnetic resonance-guided focused ultrasound ablation therapy in adenomyosis
    Li, Zhicong
    Zhang, Jing
    Song, Yang
    Yin, Xiaorui
    Chen, An
    Tang, Na
    Prince, Martin R.
    Yang, Guang
    Wang, Han
    EUROPEAN RADIOLOGY, 2021, 31 (01) : 392 - 402
  • [13] Magnetic Resonance-Guided Prostate Ablation
    Woodrum, David A.
    Kawashima, Akira
    Gorny, Krzysztof R.
    Mynderse, Lance A.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2019, 36 (05) : 351 - 366
  • [14] Delta radiomics for rectal cancer response prediction using low field magnetic resonance guided radiotherapy: an external validation
    Cusumano, Davide
    Boldrini, Luca
    Yadav, Poonam
    Yu, Gao
    Musurunu, Bindu
    Chiloiro, Giuditta
    Piras, Antonio
    Lenkowicz, Jacopo
    Placidi, Lorenzo
    Romano, Angela
    De Luca, Viola
    Votta, Claudio
    Barbaro, Brunella
    Gambacorta, Maria Antonietta
    Bassetti, Michael F.
    Yang, Yingli
    Indovina, Luca
    Valentini, Vincenzo
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 84 : 186 - 191
  • [15] Comparison and analysis of multiple machine learning models for discriminating benign and malignant testicular lesions based on magnetic resonance imaging radiomics
    Feng, Yanhui
    Feng, Zhaoyan
    Wang, Liang
    Lv, Wenzhi
    Liu, Zhiyong
    Min, Xiangde
    Li, Jin
    Zhang, Jiaxuan
    FRONTIERS IN MEDICINE, 2023, 10
  • [16] Machine Learning and Radiomics Analysis for Tumor Budding Prediction in Colorectal Liver Metastases Magnetic Resonance Imaging Assessment
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Ferrara, Gerardo
    Tatangelo, Fabiana
    Ottaiano, Alessandro
    Avallone, Antonio
    Miele, Vittorio
    Normanno, Nicola
    Izzo, Francesco
    Petrillo, Antonella
    DIAGNOSTICS, 2024, 14 (02)
  • [17] Radiomics Models Based on Magnetic Resonance Imaging for Prediction of the Response to Bortezomib-Based Therapy in Patients with Multiple Myeloma
    Li, Yang
    Yin, Ping
    Liu, Yang
    Hao, Chuanxi
    Chen, Lei
    Sun, Chao
    Wang, Sicong
    Hong, Nan
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [18] Delta radiomics for rectal cancer response prediction with hybrid 0.35T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach
    Boldrini, Luca
    Cusumano, Davide
    Chiloiro, Giuditta
    Casa, Calogero
    Masciocchi, Carlotta
    Lenkowicz, Jacopo
    Cellini, Francesco
    Dinapoli, Nicola
    Azario, Luigi
    Teodoli, Stefania
    Gambacorta, Maria Antonietta
    De Spirito, Marco
    Valentini, Vincenzo
    RADIOLOGIA MEDICA, 2019, 124 (02): : 145 - 153
  • [19] Machine learning applications in prostate cancer magnetic resonance imaging
    Cuocolo, Renato
    Cipullo, Maria Brunella
    Stanzione, Arnaldo
    Ugga, Lorenzo
    Romeo, Valeria
    Radice, Leonardo
    Brunetti, Arturo
    Imbriaco, Massimo
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)
  • [20] Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer
    Li, Xue
    Li, Chunmei
    Wang, Hong
    Jiang, Lei
    Chen, Min
    PEERJ, 2024, 12