Impacts of process parameters on diesel reforming via interpretable machine learning

被引:1
作者
Liang, Zhenwei [1 ]
Huang, Jiazhun [1 ]
Liu, Yujia [1 ]
Wang, Tiejun [1 ]
机构
[1] Guangdong Univ Technol, Coll Light Ind & Chem Engn, Guangzhou 510000, Peoples R China
基金
中国国家自然科学基金;
关键词
Diesel reforming; Reaction conditions; Machine learning; Hydrogen; FUEL; HYDROGEN; PERFORMANCE; SYNGAS; STEAM;
D O I
10.1016/j.ijhydene.2024.09.149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diesel reforming is a promising hydrogen production technology used for the clean energy conversion of high-carbon-content fuels. Although the reaction system has been established, predicting the optimal reaction conditions for the system remains challenging. Here, we obtained a set of 675 data points from Aspen Plus simulations and trained regression models to predict the reaction condition ranges that yield the highest hydrogen production in diesel reforming. The ETR model achieved the best predictive performance, with an R-2 value of 0.99. Interpretable machine learning methods revealed that temperature is a crucial feature determining the baseline hydrogen yield of the diesel reforming reaction, while the steam-to-carbon ratio is key to enhancing hydrogen yield. Our exploratory study underscores the ability of data-driven ML models to uncover the condition-yield relationship in catalytic diesel reforming for hydrogen production by isolating the effects of individual design parameters, a feat that is difficult to achieve through experimental means.
引用
收藏
页码:658 / 665
页数:8
相关论文
共 46 条
[11]   High-throughput microbial culturomics using automation and machine learning [J].
Huang, Yiming ;
Sheth, Ravi U. ;
Zhao, Shijie ;
Cohen, Lucas A. ;
Dabaghi, Kendall ;
Moody, Thomas ;
Sun, Yiwei ;
Ricaurte, Deirdre ;
Richardson, Miles ;
Velez-Cortes, Florencia ;
Blazejewski, Tomasz ;
Kaufman, Andrew ;
Ronda, Carlotta ;
Wang, Harris H. .
NATURE BIOTECHNOLOGY, 2023, 41 (10) :1424-+
[12]   Designing Catalyst Descriptors for Machine Learning in Oxidative Coupling of Methane [J].
Ishioka, Sora ;
Fujiwara, Aya ;
Nakanowatari, Sunao ;
Takahashi, Lauren ;
Taniike, Toshiaki ;
Takahashi, Keisuke .
ACS CATALYSIS, 2022, 12 (19) :11541-11546
[13]   Target-Oriented Methodology on Matching Heat Transfer Areas for a Multiperiod Heat Exchanger Network Retrofit [J].
Kang, Lixia ;
Liu, Yongzhong .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (45) :17753-17769
[14]   Heat exchanger network synthesis with detailed exchanger designs-2. Hybrid optimization strategy for synthesis of heat exchanger networks [J].
Kazi, Saif R. ;
Short, Michael ;
Isafiade, Adeniyi J. ;
Biegler, Lorenz T. .
AICHE JOURNAL, 2021, 67 (01)
[15]   Lifelong performance monitoring of PEM fuel cells using machine learning models [J].
Klass, Lukas ;
Kabza, Alexander ;
Sehnke, Frank ;
Strecker, Katharina ;
Hoelzle, Markus .
JOURNAL OF POWER SOURCES, 2023, 580
[16]   Machine learning modelling and optimization for metal hydride hydrogen storage systems [J].
Kumar, Abhijit ;
Tiwari, Saurabh ;
Gupta, Nandlal ;
Sharma, Pratibha .
SUSTAINABLE ENERGY & FUELS, 2024, 8 (09) :2073-2086
[17]   A non-catalytic diesel autothermal reformer for on-board hydrogen generation [J].
Kumar, Ravinder ;
Haridasan, Mahesh M. ;
Ahmad, Inzamam ;
Bhargav, Atul ;
Choudhuri, Suman Roy .
FUEL, 2024, 358
[18]   Highly active and stable catalyst with exsolved PtRu alloy nanoparticles for hydrogen production via commercial diesel reforming [J].
Lee, Jaemyung ;
Yeon, Changho ;
Oh, Jiwoo ;
Han, Gwangwoo ;
Do Yoo, Jeong ;
Yun, Hyung Joong ;
Lee, Chan-Woo ;
Lee, Kang Taek ;
Bae, Joongmyeon .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 316
[19]   Machine-learning scoring functions for structure-based drug lead optimization [J].
Li, Hongjian ;
Sze, Kam-Heung ;
Lu, Gang ;
Ballester, Pedro J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2020, 10 (05)
[20]   Analysis of thermodynamic equilibrium yield and process simulation for catalytic pyrolysis of light hydrocarbons based on one set of independent reactions [J].
Liu, Dongyang ;
Zhang, Linzhou ;
Zhang, Binrui ;
Bai, Yuen ;
Zhao, Liang ;
Gao, Jinsen ;
Xu, Chunming ;
Liu, He ;
Liu, Xiangqi .
CHEMICAL ENGINEERING SCIENCE, 2022, 257