Simulation of lithium-ion battery thermal runaway considering active material volume fraction effect

被引:1
|
作者
Ding, Yan [1 ,2 ]
Lu, Li [1 ,2 ]
Zhang, Huangwei [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117576, Singapore
[2] Natl Univ Singapore Chongqing Res Inst, Chongqing 401123, Peoples R China
关键词
Lithium-ion battery; Side reactions; Thermal runaway; Heat transfer; Active material; Volume fraction; ABUSE; ELECTRODE; BEHAVIOR; SAFETY; MODEL; CELL; MECHANISM; VEHICLES;
D O I
10.1016/j.ijthermalsci.2024.109336
中图分类号
O414.1 [热力学];
学科分类号
摘要
The multi-physics solver BatteryFOAM couples with the side reaction model for thermal runaway (TR) simulations, including the electrolyte decomposition (E) and solid electrolyte interface layer decomposition (SEI), and the reaction of the electrolyte with graphite intercalated lithium (NE-E) and the reaction of positive electrode active material with the electrolyte (PE-E). This solver is used to study the lithium-ion battery (LIB) TR at different conditions. The published experimental results are used to validate the effectiveness and practicability of BatteryFOAM in predicting the temperature under constat high temperature. We also discuss the reactant concentration, reaction rate, and heat release rate during the LIB TR. The influences of the external factor of the equal equivalent heat transfer (h) on the battery TR is considered, and the sequence in which the battery reaches the critical temperature rising rate (RTR, 60 K/min) and the separator failure temperature (Tsep) is predicted. The results demonstrate that overall the exothermic reaction peaks arise sequentially from SEI decomposition, PE-E reaction, NE-E reaction, and electrolyte decomposition, and NE-E reaction has three exothermic peaks induced by other three side reactions. PE-E reaction contributes more heat for fuse energy to trigger TR, but the NE-E reaction and electrolyte decomposition mainly accounts for the runaway energy. In addition, increasing SEI and electrolyte decomposition intensity is found no effect on the TR temperature. Besides, the rapid reaching to RTRis caused by the high heat release rate of positive electrode active material with electrolyte. Results further show that reducing the fNE-E within 5.0 % will significantly reduce TR risk.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Suppressing Thermal Runaway of Lithium-ion Batteries by Using Insulation Material
    Wu, Zhuoyan
    Jia, Jun
    Yin, Likun
    Zhong, Weidong
    Kang, Zhe
    Jiang, Zhuoyu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1838 - 1843
  • [32] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Meng Wang
    Anh V.Le
    Yang Shi
    Daniel J.Noelle
    Hyojung Yoon
    Minghao Zhang
    Y.Shirley Meng
    Yu Qiao
    Journal of Materials Science & Technology, 2016, 32 (11) : 1117 - 1121
  • [33] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Wang, Meng
    Le, Anh V.
    Shi, Yang
    Noelle, Daniel J.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2016, 32 (11) : 1117 - 1121
  • [34] A model for the prediction of thermal runaway in lithium-ion batteries
    Azuaje-Berbeci, Bernardo J.
    Ertan, H. Bulent
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [35] A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation
    Lee, Chan Ho
    Bae, Sang June
    Jang, Minyoung
    JOURNAL OF POWER SOURCES, 2015, 293 : 498 - 510
  • [36] Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery
    Zhou, Zhizuan
    Li, Maoyu
    Zhou, Xiaodong
    Ju, Xiaoyu
    Yang, Lizhong
    APPLIED ENERGY, 2023, 349
  • [37] Thermal runaway hazards investigation on 18650 lithium-ion battery using extended volume accelerating rate calorimeter
    Zhao, Chunpeng
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2020, 28 (28):
  • [38] Development and application of a semi-detailed model for lithium-Ion battery thermal runaway chemistry
    Yang, Shiyou
    Yang, Ruicheng
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [39] Study on the influence of high rate charge and discharge on thermal runaway behavior of lithium-ion battery
    Huang, Yajun
    Zhao, Yinquan
    Bai, Wei
    Cao, Yang
    Xu, Weifeng
    Shen, Xiongqi
    Wang, Zhirong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 1483 - 1494
  • [40] Effects of the battery enclosure on the thermal behaviors of lithium-ion battery module during thermal runaway propagation by external-heating
    Li, Zijian
    Guo, Yinliang
    Zhang, Peihong
    JOURNAL OF ENERGY STORAGE, 2022, 48