Interaction and Fusion of Rich Textual Information Network for Document-level Relation Extraction

被引:0
|
作者
Zhong, Yu [1 ]
Shen, Bo [1 ]
Wang, Tao [1 ]
Zhang, Jinglin [1 ]
Liu, Yun [1 ]
机构
[1] Beijing Jiaotong Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Natural language processing; Document-level relation extraction; Graph convolutional network;
D O I
10.3897/jucs.130588
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Detecting relations between entities across multiple sentences in a document, referred to as document-level relation extraction, poses a challenge in natural language processing. Graph networks have gained widespread application for their ability to capture long-range contextual dependencies in documents. However, previous studies have often been limited to using only two to three types of nodes to construct document graphs. This leads to insufficient utilization of the rich information within the documents and inadequate aggregation of contextual information. Additionally, relevant relationship labels often co-occur in documents, yet existing methods rarely model the dependencies of relationship labels. In this paper, we propose the Interaction and Fusion of Rich Textual Information Network (IFRTIN) that simultaneously considers multiple types of nodes. First, we utilize the structural, syntactic, and discourse information in the document to construct a document graph, capturing global dependency relationships. Next, we design a regularizer to encourage the model to capture dependencies of relationship labels. Furthermore, we design an Adaptive Encouraging Loss, which encourages well-classified instances to contribute more to the overall loss, thereby enhancing the effectiveness of the model. Experimental results demonstrate that our approach achieves a significant improvement on three document-level relation extraction datasets. Specifically, IFRTIN outperforms existing models by achieving an F1 score improvement of 0.67% on Dataset DocRED, 1.2% on Dataset CDR, and 1.3% on Dataset GDA. These results highlight the effectiveness of our approach in leveraging rich textual information and modeling label dependencies for document-level relation extraction.
引用
收藏
页码:1112 / 1136
页数:25
相关论文
共 50 条
  • [1] Document-level relation extraction with structural encoding and entity-pair-level information interaction
    Liu, Wanlong
    Xiao, Yichen
    Cheng, Shaohuan
    Zeng, Dingyi
    Zhou, Li
    Kong, Weishan
    Zhang, Malu
    Chen, Wenyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [2] Heterogenous affinity graph inference network for document-level relation extraction
    Li, Rongzhen
    Zhong, Jiang
    Xue, Zhongxuan
    Dai, Qizhu
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [3] Dual-stream dynamic graph structure network for document-level relation extraction
    Zhong, Yu
    Shen, Bo
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (09)
  • [4] Improving inference via rich path information and logic rules for document-level relation extraction
    Su, Huizhe
    Xie, Shaorong
    Yu, Hang
    Yuan, Changsen
    Wang, Xinzhi
    Luo, Xiangfeng
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, : 4207 - 4231
  • [5] Exploiting Ubiquitous Mentions for Document-Level Relation Extraction
    Zhang, Ruoyu
    Li, Yanzeng
    Zhang, Minhao
    Zou, Lei
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1986 - 1990
  • [6] Document-Level Relation Extraction with Additional Evidence and Entity Type Information
    Li, Jinliang
    Wang, Junlei
    Li, Canyu
    Liu, Xiaojing
    Feng, Zaiwen
    Qin, Li
    Mayer, Wolfgang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 226 - 237
  • [7] Document-Level Relation Extraction with Path Reasoning
    Xu, Wang
    Chen, Kehai
    Zhao, Tiejun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2023, 22 (04)
  • [8] Collective prompt tuning with relation inference for document-level relation extraction
    Yuan, Changsen
    Cao, Yixin
    Huang, Heyan
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (05)
  • [9] Document-level relation extraction with multi-semantic knowledge interaction
    Hou, Wenlong
    Wu, Wenda
    Liu, Xianhui
    Zhao, Weidong
    INFORMATION SCIENCES, 2024, 679
  • [10] Document-level relation extraction with three channels
    Zhang, Zhanjun
    Zhao, Shan
    Zhang, Haoyu
    Wan, Qian
    Liu, Jie
    KNOWLEDGE-BASED SYSTEMS, 2024, 284