Engineering second-order topological insulators via coupling two first-order topological insulators

被引:8
作者
Liu, Lizhou [1 ]
An, Jiaqi [2 ,3 ]
Ren, Yafei [4 ]
Zhang, Ying-Tao [1 ]
Qiao, Zhenhua [2 ,3 ,5 ]
Niu, Qian [2 ,3 ]
机构
[1] Hebei Normal Univ, Coll Phys, Shijiazhuang 050024, Hebei, Peoples R China
[2] Univ Sci & Technol China, Int Ctr Quantum Design Funct Mat, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Delaware, Dept Phys, Newark, DE 19716 USA
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
REALIZATION; CATALOG;
D O I
10.1103/PhysRevB.110.115427
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate the engineering of two-dimensional second-order topological insulators with corner states by coupling two first-order topological insulators. We find that the interlayer coupling between two topological insulators with opposite topological invariants results in the formation of edge state gaps, which are essential for the emergence of the corner states. Using the effective Hamiltonian framework, we elucidate that the formation of topological corner states requires either the preservation of symmetry in the crystal system or effective mass countersigns for neighboring edge states. Our proposed strategy for inducing corner state through interlayer coupling is versatile and applicable to both Z(2) topological insulators and quantum anomalous Hall effects. We demonstrate this approach using several representative models including the seminal Kane-Mele model, the Bernevig-Hughes-Zhang model, and the Rashba graphene model to explicitly exhibit the formation of corner states via interlayer coupling. Moreover, we also observe that the stacking of the coupled Z(2) topological insulating systems results in the formation of the time-reversal invariant three-dimensional second-order nodal ring semimetals. Remarkably, the three-dimensional system from the stacking of the Bernevig-Hughes-Zhang model can be transformed into second-order Dirac semimetals, characterized by one-dimensional hinge Fermi arcs. Our strategy of engineering second-order topological phases via simple interlayer coupling promises to advance the exploration of higher-order topological insulators in two-dimensional spinful systems.
引用
收藏
页数:16
相关论文
共 101 条
[1]   Colloquium: Topological band theory [J].
Bansil, A. ;
Lin, Hsin ;
Das, Tanmoy .
REVIEWS OF MODERN PHYSICS, 2016, 88 (02)
[2]   Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators [J].
Benalcazar, Wladimir A. ;
Li, Tianhe ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2019, 99 (24)
[3]   Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
PHYSICAL REVIEW B, 2017, 96 (24)
[4]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[5]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[6]   Topological quantum chemistry [J].
Bradlyn, Barry ;
Elcoro, L. ;
Cano, Jennifer ;
Vergniory, M. G. ;
Wang, Zhijun ;
Felser, C. ;
Aroyo, M. I. . ;
Bernevig, B. Andrei .
NATURE, 2017, 547 (7663) :298-305
[7]  
Chang CZ, 2023, REV MOD PHYS, V95, DOI [10.1103/RevModPhys.96.011002, 10.1103/RevModPhys.95.011002]
[8]   Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State [J].
Chang, Cui-Zu ;
Zhao, Weiwei ;
Kim, Duk Y. ;
Wei, Peng ;
Jain, J. K. ;
Liu, Chaoxing ;
Chan, Moses H. W. ;
Moodera, Jagadeesh S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (05)
[9]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/nmat4204, 10.1038/NMAT4204]
[10]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170