Analysis of a positivity-preserving splitting scheme for some semilinear stochastic heat equations

被引:1
作者
Brehier, Charles-Edouard [1 ]
Cohen, David [2 ,3 ]
Ulander, Johan [2 ,3 ]
机构
[1] Univ Pau & Pays Adour, CNRS, LMAP, E2S UPPA, Pau, France
[2] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
[3] Univ Gothenburg, S-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
Stochastic partial differential equations; stochastic heat equation; splitting scheme; positivity-preserving scheme; mean-square convergence; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT DISCRETIZATION; STRONG-CONVERGENCE; STRICT POSITIVITY; EULER SCHEME; NUMERICAL APPROXIMATION; EXPONENTIAL INTEGRATORS; LATTICE APPROXIMATIONS; SCHRODINGER-EQUATION; COMPARISON PRINCIPLE;
D O I
10.1051/m2an/2024032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a positivity-preserving Lie-Trotter splitting scheme with finite difference discretization in space for approximating the solutions to a class of semilinear stochastic heat equations with multiplicative space-time white noise. We prove that this explicit numerical scheme converges in the mean-square sense, with rate 1/4 in time and rate 1/2 in space, under appropriate CFL conditions. Numerical experiments illustrate the superiority of the proposed numerical scheme compared with standard numerical methods which do not preserve positivity.
引用
收藏
页码:1317 / 1346
页数:30
相关论文
共 88 条
[1]   Positivity-preserving numerical schemes for stochastic differential equations [J].
Abiko, Keisuke ;
Ishiwata, Tetsuya .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 39 (03) :1095-1108
[3]  
[Anonymous], 2023, Zenodo, DOI [10.5281/zenodo.10300733, DOI 10.5281/ZENODO.10300733]
[4]   A fully discrete approximation of the one-dimensional stochastic heat equation [J].
Anton, Rikard ;
Cohen, David ;
Quer-Sardanyons, Lluis .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) :247-284
[5]   A splitting algorithm for stochastic partial differential equations driven by linear multiplicative noise [J].
Barbu, Viorel ;
Roeckner, Michael .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (04) :457-471
[6]   LP and almost sure convergence of a Milstein scheme for stochastic partial differential equations [J].
Barth, Andrea ;
Lang, Annika .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (05) :1563-1587
[7]   Simulation of stochastic partial differential equations using finite element methods [J].
Barth, Andrea ;
Lang, Annika .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2012, 84 (2-3) :217-231
[8]   Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise [J].
Bauzet, Caroline ;
Nabet, Flore ;
Schmitz, Kerstin ;
Zimmermann, Aleksandra .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (02) :745-783
[9]  
Bayer C, 2016, SCI COMPUT, P499, DOI 10.1007/978-3-319-41589-5_15
[10]   On the positivity of the stochastic heat equation [J].
Benth, FE .
POTENTIAL ANALYSIS, 1997, 6 (02) :127-148