ON SOME ANALYTIC PROPERTIES OF A FUNCTION ASSOCIATED WITH THE SELBERG CLASS SATISFYING CERTAIN SPECIAL CONDITIONS

被引:0
作者
Iwata, Hideto [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya 4648602, Japan
关键词
polynomial Euler product; Whittaker function; Selberg class.;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2001, M. Rekos described the analytic behavior for a function connected with the Euler totient function for the upper half-plane H. In this paper, for Im z > 0 we describe the analytic behavior of the generalized function f(z, F), where the function F belongs to a subclass of the Selberg class which has a polynomial Euler product expressions and satisfies some special conditions.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 12 条
[1]   ON THE SELBERG CLASS OF DIRICHLET SERIES - SMALL DEGREES [J].
CONREY, JB ;
GHOSH, A .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) :673-693
[2]  
Erdelyi, 1953, Higher Transcendental Functions, VI
[3]  
IVIC A, 1985, RIEMANN ZETA FUNCTIO
[4]   On the distribution of the a-points of a Selberg class L-function modulo one [J].
Jakhlouti, Med-Taib ;
Mazhouda, Kamel ;
Steuding, Joern .
ARCHIV DER MATHEMATIK, 2015, 104 (05) :419-429
[5]   A Weak Converse Theorem for Degree 2 L-Functions with Conductor 1 [J].
Kaczorowski, Jerzy ;
Perelli, Alberto .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2017, 53 (02) :337-347
[6]   On a generalization of the Euler totient function [J].
Kaczorowski, Jerzy .
MONATSHEFTE FUR MATHEMATIK, 2013, 170 (01) :27-48
[7]  
Lebedev NN, 1972, SPECIAL FUNCTIONS TH
[8]  
Perelli A., 2005, Milan J. Math, V73, P19
[9]  
Rekos M., 2001, Funct. Approx. Comment. Math, V29, P113
[10]  
Slater LJ, 1960, CONFLUENT HYPERGEOME