Initial Boundary Value Problem for the Coupled Kundu Equations on the Half-Line

被引:0
作者
Hu, Jiawei [1 ]
Zhang, Ning [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Dept Fundamental Course, Tai An 271019, Peoples R China
基金
中国国家自然科学基金;
关键词
the coupled Kundu equations; initial boundary value problem; Fokas unified method; Riemann-Hilbert problem; NONLINEAR SCHRODINGER-EQUATION; RIEMANN-HILBERT APPROACH; INTEGRABLE GENERALIZATION; MKDV EQUATION;
D O I
10.3390/axioms13090579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the coupled Kundu equations are analyzed using the Fokas unified method on the half-line. We resolve a Riemann-Hilbert (RH) problem in order to illustrate the representation of the potential function in the coupled Kundu equations. The jump matrix is obtained from the spectral matrix, which is determined according to the initial value data and the boundary value data. The findings indicate that these spectral functions exhibit interdependence rather than being mutually independent, and adhere to a global relation while being connected by a compatibility condition.
引用
收藏
页数:28
相关论文
共 36 条
[1]   Riemann-Hilbert approach and the soliton solutions of the discrete mKdV equations [J].
Chen, Meisen ;
Fan, Engui ;
He, Jingsong .
CHAOS SOLITONS & FRACTALS, 2023, 168
[2]   The Riemann-Hilbert analysis to the Pollaczek-Jacobi type orthogonal polynomials [J].
Chen, Min ;
Chen, Yang ;
Fan, En-Gui .
STUDIES IN APPLIED MATHEMATICS, 2019, 143 (01) :42-80
[3]   THE mKdV EQUATION ON THE HALF-LINE [J].
De Monvel, A. Boutet ;
Fokas, A. S. ;
Shepelsky, D. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2004, 3 (02) :139-164
[4]  
de Monvel AB, 2004, ANN I FOURIER, V54, P1477
[5]   The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation [J].
Dong, Huanhe ;
Zhang, Yong ;
Zhang, Xiaoen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 36 :354-365
[6]   A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations [J].
Fan, E .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) :4327-4344
[7]   Frobenius integrable decompositions of nonlinear evolution equations with modified term [J].
Fang, Yong ;
Dong, Huanhe ;
Hou, Yijun ;
Kong, Yuan .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :435-440
[8]  
Fokas A., 1993, Important Developments in Soliton Theory
[9]   The nonlinear Schrodinger equation on the interval [J].
Fokas, AS ;
Its, AR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (23) :6091-6114
[10]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150