Is SiC a Predominant Technology for Future High Power Electronics?: A Critical Review

被引:2
作者
Fletcher, A. S. Augustine [1 ]
Nirmal, D. [1 ]
Ajayan, J. [2 ]
Murugapandiyan, P. [3 ]
机构
[1] Karunya Inst Technol & Sci, Dept Elect & Commun Engn, Coimbatore, India
[2] SR Univ, Dept Elect & Commun Engn, Warangal, India
[3] Anil Neerukonda, Dept Elect & Commun Engn, Visakhapatnam, India
关键词
SiC; SiC MOSFET; Si; Si-IGBT; high power device; power electronics; THRESHOLD-VOLTAGE INSTABILITY; AL2O3/LAALO3/SIO2; GATE-STACK; 4H-SIC MOSFETS; CHANNEL MOBILITY; HIGH-TEMPERATURE; HIGH-FREQUENCY; TRENCH MOSFET; IGBT; OPTIMIZATION; RELIABILITY;
D O I
10.2174/0115734137268803231120111751
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Due to the magnificent properties of Silicon Carbide (SiC), such as high saturation drift velocity, large operating temperature, higher cut-off and maximum frequency (fT and fmax), high thermal conductivity and large breakdown voltages (BV), it is desirable for high power electronics. With the latest advancements in semiconductor materials and processing technologies, diverse high-power applications such as inverters, power supplies, power converters and smart electric vehicles are implemented using SiC-based power devices. Especially, SiC MOSFETs are mostly used in high-power applications due to their capability to achieve lower switching loss, higher switching speed and lower ON resistance than the Si-based (Insulated gate bipolar transistor) IGBTs. In this paper, a critical study of SiC MOSFET architectures, emerging dielectric techniques, mobility enhancement methods and irradiation effects are discussed. Moreover, the roadmap of Silicon Carbide power devices is also briefly summarized.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 138 条
  • [1] Abbate C, 2019, IEEE T ELECTRON DEV, V66, P4243, DOI 10.1109/TED.2019.2931078
  • [2] Demonstration of Superior Electrical Characteristics for 1.2 kV SiC Schottky Barrier Diode-Wall Integrated Trench MOSFET With Higher Schottky Barrier Height Metal
    Aiba, Ruito
    Matsui, Kevin
    Baba, Masakazu
    Harada, Shinsuke
    Yano, Hiroshi
    Iwamuro, Noriyuki
    [J]. IEEE ELECTRON DEVICE LETTERS, 2020, 41 (12) : 1810 - 1813
  • [3] A critical review of AlGaN/GaN-heterostructure based Schottky diode/HEMT hydrogen (H2) sensors for aerospace and industrial applications
    Ajayan, J.
    Nirmal, D.
    Ramesh, R.
    Bhattacharya, Sandip
    Tayal, Shubham
    Joseph, L. M. I. Leo
    Thoutam, Laxman Raju
    Ajitha, D.
    [J]. MEASUREMENT, 2021, 186 (186)
  • [4] Radiation Effects in Commercial 1200 V 24 A Silicon Carbide Power MOSFETs
    Akturk, A.
    McGarrity, J. M.
    Potbhare, S.
    Goldsman, N.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (06) : 3258 - 3264
  • [5] 5 MeV Proton and 15 MeV Electron Radiation Effects Study on 4H-SiC nMOSFET Electrical Parameters
    Alexandru, M.
    Florentin, M.
    Constant, A.
    Schmidt, B.
    Michel, P.
    Godignon, P.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (04) : 1732 - 1738
  • [6] [Anonymous], 2015, P EPE15 EN CONV C EX
  • [7] Anthon A, 2015, IEEE ENER CONV, P3003, DOI 10.1109/ECCE.2015.7310080
  • [8] A Junctionless Silicon Carbide Transistor for Harsh Environment Applications
    Baruah, Ratul K.
    Mahajan, Bikram K.
    Chen, Yen-Pu
    Paily, Roy P.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (10) : 5682 - 5690
  • [9] Multiobjective Optimization of Design of 4H-SiC Power MOSFETs for Specific Applications
    Bencherif, H.
    Dehimi, L.
    Pezzimenti, F.
    De Martino, G.
    Della Corte, F. G.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (06) : 3871 - 3880
  • [10] Bongmook, 2017, IEEE ELECTR DEVICE L, V39, P244