Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter

被引:10
作者
Moudry, Vitezslav [1 ]
Bazzichetto, Manuele [1 ]
Remelgado, Ruben [2 ,3 ]
Devillers, Rodolphe [4 ]
Lenoir, Jonathan [5 ]
Mateo, Ruben G. [6 ,7 ]
Lembrechts, Jonas J. [8 ]
Sillero, Neftali [9 ]
Lecours, Vincent [10 ]
Cord, Anna F. [2 ,3 ]
Bartak, Vojtech [1 ]
Balej, Petr [1 ]
Rocchini, Duccio [1 ,11 ]
Torresani, Michele [12 ]
Arenas-Castro, Salvador [13 ]
Man, Matej [14 ]
Prajzlerova, Dominika [1 ]
Gdulova, Katerina [1 ]
Prosek, Jiri [1 ,14 ]
Marchetto, Elisa [11 ]
Zarzo-Arias, Alejandra [15 ,16 ]
Gabor, Lukas [1 ]
Leroy, Francois [1 ]
Martini, Matilde [11 ]
Malavasi, Marco [17 ]
Cazzolla Gatti, Roberto [11 ]
Wild, Jan [1 ,14 ]
Simova, Petra [1 ]
机构
[1] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Spatial Sci, Prague, Czech Republic
[2] TUD Dresden Univ Technol, Chair Computat Landscape Ecol, Dresden, Germany
[3] Univ Bonn, Inst Crop Sci & Resource Conservat, Agroecol Modeling Grp, Bonn, Germany
[4] Univ Reunion, Inst Rech Dev, UMR Espace Dev, La Union, France
[5] Univ Picardie Jules Verne, Ecol & Dynam Syst Anthropises EDYSAN, UMR CNRS 7058, Amiens, France
[6] Univ Autonoma Madrid, Dept Biol, Madrid, Spain
[7] Univ Autonoma Madrid, Ctr Invest Biodiversidad & Cambio Global CIBC UAM, Madrid, Spain
[8] Univ Antwerp, Dept Biol, Res Grp Plants & Ecosyst PLECO, Antwerp, Belgium
[9] Univ Porto, Ctr Invest Ciencias Geoespaciais, CICGE, Fac Ciencias, Alameda Monte da Virgem, Vila Nova De Gaia, Portugal
[10] Univ Quebec Chicoutimi, Saguenay, PQ, Canada
[11] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, BIOME Lab, Bologna, Italy
[12] Free Univ Bolzano Bozen, Fac Agr Environm & Food Sci, Bolzano, Italy
[13] Univ Cordoba, Fac Ciencias, Area Ecol, Dept Bot Ecol & Fisiol Vegetal, Edificio Celestino Mutis C-4, Cordoba, Spain
[14] Czech Acad Sci, Inst Bot, Pruhonice, Czech Republic
[15] Univ Oviedo, Oviedo, Spain
[16] Museo Nacl Ciencias Nat MNCN CSIC, Dept Biogeog & Global Change, Madrid, Spain
[17] Univ Sassari, Dept Chem Phys Math & Nat Sci, Sassari, Italy
关键词
data quality; ecological niche modelling; filtering; sampling; spatial scale; validation; OCCURRENCE RECORDS; SPATIAL PREDICTION; PRESENCE-ABSENCE; ACCURACY; NICHE; SCALE; PERFORMANCE; ERRORS; CONSERVATION; COMPLEXITY;
D O I
10.1111/ecog.07294
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species-environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.
引用
收藏
页数:20
相关论文
共 182 条
  • [11] Error and uncertainty in habitat models
    Barry, Simon
    Elith, Jane
    [J]. JOURNAL OF APPLIED ECOLOGY, 2006, 43 (03) : 413 - 423
  • [12] Sampling strategy matters to accurately estimate response curves' parameters in species distribution models
    Bazzichetto, Manuele
    Lenoir, Jonathan
    Da Re, Daniele
    Tordoni, Enrico
    Rocchini, Duccio
    Malavasi, Marco
    Bartak, Vojtech
    Sperandii, Marta Gaia
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2023, 32 (10): : 1717 - 1729
  • [13] Once upon a time in the far south: Influence of local drivers and functional traits on plant invasion in the harsh sub-Antarctic islands
    Bazzichetto, Manuele
    Massol, Francois
    Carboni, Marta
    Lenoir, Jonathan
    Lembrechts, Jonas J.
    Joly, Remi
    Renault, David
    [J]. JOURNAL OF VEGETATION SCIENCE, 2021, 32 (04)
  • [14] The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models
    Bean, William T.
    Stafford, Robert
    Brashares, Justin S.
    [J]. ECOGRAPHY, 2012, 35 (03) : 250 - 258
  • [15] Spatial bias in the GBIF database and its effect on modeling species' geographic distributions
    Beck, Jan
    Boeller, Marianne
    Erhardt, Andreas
    Schwanghart, Wolfgang
    [J]. ECOLOGICAL INFORMATICS, 2014, 19 : 10 - 15
  • [16] Finding rare species and estimating the probability that all occupied sites have been found
    Becker, Francois S.
    Slingsby, Jasper A.
    Measey, John
    Tolley, Krystal A.
    Altwegg, Res
    [J]. ECOLOGICAL APPLICATIONS, 2022, 32 (02)
  • [17] On the dangers of model complexity without ecological justification in species distribution modeling
    Bell, David M.
    Schlaepfer, Daniel R.
    [J]. ECOLOGICAL MODELLING, 2016, 330 : 50 - 59
  • [18] The n-dimensional hypervolume
    Blonder, Benjamin
    Lamanna, Christine
    Violle, Cyrille
    Enquist, Brian J.
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (05): : 595 - 609
  • [19] Why georeferencing matters: Introducing a practical protocol to prepare species occurrence records for spatial analysis
    Bloom, Trevor D. S.
    Flower, Aquila
    DeChaine, Eric G.
    [J]. ECOLOGY AND EVOLUTION, 2018, 8 (01): : 765 - 777
  • [20] Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data
    Boakes, Elizabeth H.
    McGowan, Philip J. K.
    Fuller, Richard A.
    Ding Chang-qing
    Clark, Natalie E.
    O'Connor, Kim
    Mace, Georgina M.
    [J]. PLOS BIOLOGY, 2010, 8 (06)