Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter

被引:10
作者
Moudry, Vitezslav [1 ]
Bazzichetto, Manuele [1 ]
Remelgado, Ruben [2 ,3 ]
Devillers, Rodolphe [4 ]
Lenoir, Jonathan [5 ]
Mateo, Ruben G. [6 ,7 ]
Lembrechts, Jonas J. [8 ]
Sillero, Neftali [9 ]
Lecours, Vincent [10 ]
Cord, Anna F. [2 ,3 ]
Bartak, Vojtech [1 ]
Balej, Petr [1 ]
Rocchini, Duccio [1 ,11 ]
Torresani, Michele [12 ]
Arenas-Castro, Salvador [13 ]
Man, Matej [14 ]
Prajzlerova, Dominika [1 ]
Gdulova, Katerina [1 ]
Prosek, Jiri [1 ,14 ]
Marchetto, Elisa [11 ]
Zarzo-Arias, Alejandra [15 ,16 ]
Gabor, Lukas [1 ]
Leroy, Francois [1 ]
Martini, Matilde [11 ]
Malavasi, Marco [17 ]
Cazzolla Gatti, Roberto [11 ]
Wild, Jan [1 ,14 ]
Simova, Petra [1 ]
机构
[1] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Spatial Sci, Prague, Czech Republic
[2] TUD Dresden Univ Technol, Chair Computat Landscape Ecol, Dresden, Germany
[3] Univ Bonn, Inst Crop Sci & Resource Conservat, Agroecol Modeling Grp, Bonn, Germany
[4] Univ Reunion, Inst Rech Dev, UMR Espace Dev, La Union, France
[5] Univ Picardie Jules Verne, Ecol & Dynam Syst Anthropises EDYSAN, UMR CNRS 7058, Amiens, France
[6] Univ Autonoma Madrid, Dept Biol, Madrid, Spain
[7] Univ Autonoma Madrid, Ctr Invest Biodiversidad & Cambio Global CIBC UAM, Madrid, Spain
[8] Univ Antwerp, Dept Biol, Res Grp Plants & Ecosyst PLECO, Antwerp, Belgium
[9] Univ Porto, Ctr Invest Ciencias Geoespaciais, CICGE, Fac Ciencias, Alameda Monte da Virgem, Vila Nova De Gaia, Portugal
[10] Univ Quebec Chicoutimi, Saguenay, PQ, Canada
[11] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, BIOME Lab, Bologna, Italy
[12] Free Univ Bolzano Bozen, Fac Agr Environm & Food Sci, Bolzano, Italy
[13] Univ Cordoba, Fac Ciencias, Area Ecol, Dept Bot Ecol & Fisiol Vegetal, Edificio Celestino Mutis C-4, Cordoba, Spain
[14] Czech Acad Sci, Inst Bot, Pruhonice, Czech Republic
[15] Univ Oviedo, Oviedo, Spain
[16] Museo Nacl Ciencias Nat MNCN CSIC, Dept Biogeog & Global Change, Madrid, Spain
[17] Univ Sassari, Dept Chem Phys Math & Nat Sci, Sassari, Italy
关键词
data quality; ecological niche modelling; filtering; sampling; spatial scale; validation; OCCURRENCE RECORDS; SPATIAL PREDICTION; PRESENCE-ABSENCE; ACCURACY; NICHE; SCALE; PERFORMANCE; ERRORS; CONSERVATION; COMPLEXITY;
D O I
10.1111/ecog.07294
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species-environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.
引用
收藏
页数:20
相关论文
共 182 条
  • [91] An Ecological Framework for Modeling the Geography of Disease Transmission
    Johnson, Erica E.
    Escobar, Luis E.
    Zambrana-Torrelio, Carlos
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2019, 34 (07) : 655 - 668
  • [92] Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models
    Kadmon, R
    Farber, O
    Danin, A
    [J]. ECOLOGICAL APPLICATIONS, 2004, 14 (02) : 401 - 413
  • [93] Kadmon R, 2003, ECOL APPL, V13, P853, DOI 10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO
  • [94] 2
  • [95] Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions
    Keil, Petr
    Wilson, Adam M.
    Jetz, Walter
    [J]. DIVERSITY AND DISTRIBUTIONS, 2014, 20 (07) : 797 - 812
  • [96] Kos T, 2010, ELMAR PROC, P399
  • [97] The importance of correcting for sampling bias in MaxEnt species distribution models
    Kramer-Schadt, Stephanie
    Niedballa, Juergen
    Pilgrim, John D.
    Schroeder, Boris
    Lindenborn, Jana
    Reinfelder, Vanessa
    Stillfried, Milena
    Heckmann, Ilja
    Scharf, Anne K.
    Augeri, Dave M.
    Cheyne, Susan M.
    Hearn, Andrew J.
    Ross, Joanna
    Macdonald, David W.
    Mathai, John
    Eaton, James
    Marshall, Andrew J.
    Semiadi, Gono
    Rustam, Rustam
    Bernard, Henry
    Alfred, Raymond
    Samejima, Hiromitsu
    Duckworth, J. W.
    Breitenmoser-Wuersten, Christine
    Belant, Jerrold L.
    Hofer, Heribert
    Wilting, Andreas
    [J]. DIVERSITY AND DISTRIBUTIONS, 2013, 19 (11) : 1366 - 1379
  • [98] No optimal spatial filtering distance for mitigating sampling bias in ecological niche models
    Lamboley, Quentin
    Fourcade, Yoan
    [J]. JOURNAL OF BIOGEOGRAPHY, 2024, 51 (09) : 1783 - 1794
  • [99] Spatial scale and geographic context in benthic habitat mapping: review and future directions
    Lecours, Vincent
    Devillers, Rodolphe
    Schneider, David C.
    Lucieer, Vanessa L.
    Brown, Craig J.
    Edinger, Evan N.
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2015, 535 : 259 - 284
  • [100] Effects of geographical data sampling bias on habitat models of species distributions: a case study with steppe birds in southern Portugal
    Leitao, Pedro J.
    Moreira, Francisco
    Osborne, Patrick E.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2011, 25 (03) : 439 - 453