Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter

被引:10
作者
Moudry, Vitezslav [1 ]
Bazzichetto, Manuele [1 ]
Remelgado, Ruben [2 ,3 ]
Devillers, Rodolphe [4 ]
Lenoir, Jonathan [5 ]
Mateo, Ruben G. [6 ,7 ]
Lembrechts, Jonas J. [8 ]
Sillero, Neftali [9 ]
Lecours, Vincent [10 ]
Cord, Anna F. [2 ,3 ]
Bartak, Vojtech [1 ]
Balej, Petr [1 ]
Rocchini, Duccio [1 ,11 ]
Torresani, Michele [12 ]
Arenas-Castro, Salvador [13 ]
Man, Matej [14 ]
Prajzlerova, Dominika [1 ]
Gdulova, Katerina [1 ]
Prosek, Jiri [1 ,14 ]
Marchetto, Elisa [11 ]
Zarzo-Arias, Alejandra [15 ,16 ]
Gabor, Lukas [1 ]
Leroy, Francois [1 ]
Martini, Matilde [11 ]
Malavasi, Marco [17 ]
Cazzolla Gatti, Roberto [11 ]
Wild, Jan [1 ,14 ]
Simova, Petra [1 ]
机构
[1] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Spatial Sci, Prague, Czech Republic
[2] TUD Dresden Univ Technol, Chair Computat Landscape Ecol, Dresden, Germany
[3] Univ Bonn, Inst Crop Sci & Resource Conservat, Agroecol Modeling Grp, Bonn, Germany
[4] Univ Reunion, Inst Rech Dev, UMR Espace Dev, La Union, France
[5] Univ Picardie Jules Verne, Ecol & Dynam Syst Anthropises EDYSAN, UMR CNRS 7058, Amiens, France
[6] Univ Autonoma Madrid, Dept Biol, Madrid, Spain
[7] Univ Autonoma Madrid, Ctr Invest Biodiversidad & Cambio Global CIBC UAM, Madrid, Spain
[8] Univ Antwerp, Dept Biol, Res Grp Plants & Ecosyst PLECO, Antwerp, Belgium
[9] Univ Porto, Ctr Invest Ciencias Geoespaciais, CICGE, Fac Ciencias, Alameda Monte da Virgem, Vila Nova De Gaia, Portugal
[10] Univ Quebec Chicoutimi, Saguenay, PQ, Canada
[11] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, BIOME Lab, Bologna, Italy
[12] Free Univ Bolzano Bozen, Fac Agr Environm & Food Sci, Bolzano, Italy
[13] Univ Cordoba, Fac Ciencias, Area Ecol, Dept Bot Ecol & Fisiol Vegetal, Edificio Celestino Mutis C-4, Cordoba, Spain
[14] Czech Acad Sci, Inst Bot, Pruhonice, Czech Republic
[15] Univ Oviedo, Oviedo, Spain
[16] Museo Nacl Ciencias Nat MNCN CSIC, Dept Biogeog & Global Change, Madrid, Spain
[17] Univ Sassari, Dept Chem Phys Math & Nat Sci, Sassari, Italy
关键词
data quality; ecological niche modelling; filtering; sampling; spatial scale; validation; OCCURRENCE RECORDS; SPATIAL PREDICTION; PRESENCE-ABSENCE; ACCURACY; NICHE; SCALE; PERFORMANCE; ERRORS; CONSERVATION; COMPLEXITY;
D O I
10.1111/ecog.07294
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species-environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.
引用
收藏
页数:20
相关论文
共 182 条
  • [1] Comparative interpretation of count, presence-absence and point methods for species distribution models
    Aarts, Geert
    Fieberg, John
    Matthiopoulos, Jason
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (01): : 177 - 187
  • [2] LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA
    ANSELIN, L
    [J]. GEOGRAPHICAL ANALYSIS, 1995, 27 (02) : 93 - 115
  • [3] Standards for distribution models in biodiversity assessments
    Araujo, Miguel B.
    Anderson, Robert P.
    Marcia Barbosa, A.
    Beale, Colin M.
    Dormann, Carsten F.
    Early, Regan
    Garcia, Raquel A.
    Guisan, Antoine
    Maiorano, Luigi
    Naimi, Babak
    O'Hara, Robert B.
    Zimmermann, Niklaus E.
    Rahbek, Carsten
    [J]. SCIENCE ADVANCES, 2019, 5 (01)
  • [4] Uses and misuses of bioclimatic envelope modeling
    Araujo, Miguel B.
    Townsend Peterson, A.
    [J]. ECOLOGY, 2012, 93 (07) : 1527 - 1539
  • [5] Effects of input data sources on species distribution model predictions across species with different distributional ranges
    Arenas-Castro, Salvador
    Regos, Adrian
    Martins, Ivone
    Honrado, Joao
    Alonso, Joaquim
    [J]. JOURNAL OF BIOGEOGRAPHY, 2022, 49 (07) : 1299 - 1312
  • [6] Spatial prediction of species distribution: an interface between ecological theory and statistical modelling
    Austin, MP
    [J]. ECOLOGICAL MODELLING, 2002, 157 (2-3) : 101 - 118
  • [7] On the complexity of model complexity: Viewpoints across the geosciences
    Baartman, Jantiene E. M.
    Melsen, Lieke A.
    Moore, Demie
    van der Ploeg, Martine J.
    [J]. CATENA, 2020, 186
  • [8] Correlations between spatial sampling biases and environmental niches affect species distribution models
    Baker, David J.
    Maclean, Ilya M. D.
    Goodall, Martin
    Gaston, Kevin J.
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2022, 31 (06): : 1038 - 1050
  • [9] Target-group backgrounds prove effective at correcting sampling bias in Maxent models
    Barber, Robert A.
    Ball, Stuart G.
    Morris, Roger K. A.
    Gilbert, Francis
    [J]. DIVERSITY AND DISTRIBUTIONS, 2022, 28 (01) : 128 - 141
  • [10] Testing the Skill of a Species Distribution Model Using a 21st Century Virtual Ecosystem
    Bardon, L. R.
    Ward, B. A.
    Dutkiewicz, S.
    Cael, B. B.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (22)