THE GENERATOR AND QUANTUM MARKOV SEMIGROUP FOR QUANTUM WALKS

被引:6
作者
Ko, Chul Ki [1 ]
Yoo, Hyun Jae [2 ]
机构
[1] Yonsei Univ, Univ Coll, Seoul 120749, South Korea
[2] Hankyong Natl Univ, Dept Appl Math, Anseong 456749, Gyeonggi Do, South Korea
关键词
Quantum walks; Schrodinger approach; generator; continuous time quantum walks; limit distribution; superposition; quantum Markov semigroup;
D O I
10.2996/kmj/1372337524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quantum walks in the lattice spaces are represented as unitary evolutions. We find a generator for the evolution and apply it to further understand the walks. We first extend the discrete time quantum walks to continuous time walks. Then we construct the quantum Markov semigroup for quantum walks and characterize it in an invariant subalgebra. In the meanwhile, we obtain the limit distributions of the quantum walks in one-dimension with a proper scaling, which was obtained by Konno by a different method.
引用
收藏
页码:363 / 385
页数:23
相关论文
共 22 条
[1]   Asymptotic evolution of quantum walks with random coin [J].
Ahlbrecht, A. ;
Vogts, H. ;
Werner, A. H. ;
Werner, R. F. .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[2]  
AMBAINIS A., 2001, P 33 ANN ACM S THEOR, V37
[3]  
[Anonymous], 1992, MONOGRAPHS MATH
[4]  
Bleistein N., 1986, Asymptotic Expansions of Integrals, Vsecond
[5]  
Fagnola F., 1999, Proyecciones J. Math, V18, P144
[6]   Quantum computation and decision trees [J].
Farhi, E ;
Gutmann, S .
PHYSICAL REVIEW A, 1998, 58 (02) :915-928
[7]   Weak limits for quantum random walks [J].
Grimmett, G ;
Janson, S ;
Scudo, PF .
PHYSICAL REVIEW E, 2004, 69 (02) :026119-1
[8]  
KATORI M., 2005, PHYS REV A, V72
[9]   Quantum random walks: an introductory overview [J].
Kempe, J .
CONTEMPORARY PHYSICS, 2003, 44 (04) :307-327
[10]  
KO C. K., INF DIM ANA IN PRESS